Matching Items (3)
Filtering by

Clear all filters

156222-Thumbnail Image.png
Description
The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands.

The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon.

A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division multiplexing scheme. The memory bus is formed using a microwave signal carried within a waveguide. We call this approach multicarrier memory channel architecture (MCMCA). In MCMCA, each memory signal is modulated onto an RF carrier using 64-QAM format or higher. The carriers are then routed using substrate integrated waveguide (SIW) interconnects. At the receiver, the memory signals are demodulated and then delivered to SDRAM devices. We pioneered the usage of SIW as memory channel interconnects and demonstrated that it alleviates the memory bandwidth bottleneck. We demonstrated SIW performance superiority over conventional transmission line in immunity to cross-talk and electromagnetic interference. We developed a methodology based on design of experiment (DOE) and response surface method techniques that optimizes the design of SIW interconnects and minimizes its performance fluctuations under material and manufacturing variations. Along with using SIW, we implemented a multicarrier architecture which enabled the aggregated DDR bandwidth to reach 30 Gbit/s. We developed an end-to-end system model in Simulink and demonstrated the MCMCA performance for ultra-high throughput memory channel.

Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW interconnect is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 240 GBytes/s data transfer with EVM not exceeding 2.26% and phase error of 1.07 degree or less.
ContributorsBensalem, Brahim (Author) / Aberle, James T. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tirkas, Panayiotis A. (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
158105-Thumbnail Image.png
Description
Impedance-modulated metasurfaces are compact artificially-engineered surfaces whose surface-impedance profile is modulated with a periodic function. These metasurfaces function as leaky-wave antennas (LWAs) that are capable of achieving high gains and narrow beamwidths with thin and light-weight structures. The surface-impedance modulation function for the desired radiation characteristics can be obtained using

Impedance-modulated metasurfaces are compact artificially-engineered surfaces whose surface-impedance profile is modulated with a periodic function. These metasurfaces function as leaky-wave antennas (LWAs) that are capable of achieving high gains and narrow beamwidths with thin and light-weight structures. The surface-impedance modulation function for the desired radiation characteristics can be obtained using the holographic principle, whose application in antennas has been investigated extensively.

On account of their radiation and physical characteristics, modulated metasurfaces can be employed in automotive radar, 5G, and imaging applications. Automotive radar applications might require the antennas to be flush-mounted on the vehicular bodies that can be curved. Hence, it is necessary to analyze and design conformal metasurface antennas. The surface-impedance modulation function is derived for cylindrically-curved metasurfaces, where the impedance modulation is along the cylinder axis. These metasurface antennas are referred to as axially-modulated cylindrical metasurface LWAs (AMCLWAs). The effect of curvature is modeled, the radiation characteristics are predicted analytically, and they are validated by simulations and measurements.

Communication-based applications, like 5G and 6G, require the generation of multiple beams with polarization diversity, which can be achieved using a class of impedance-modulated metasurfaces referred to as polarization-diverse holographic metasurfaces (PDHMs). PDHMs can form, one at a time, a pencil beam in the desired direction with horizontal polarization, vertical polarization, left-hand circular polarization (LHCP), or right-hand circular polarization (RHCP). These metasurface antennas are analyzed, designed, measured, and improved to include the ability to frequency scan.

In automotive radar and other imaging applications, the performance of metasurface antennas can be impacted by the formation of standing waves due to multiple reflections between the antenna and the target. The monostatic RCS of the metasurface antenna is reduced by modulating its surface impedance with a square wave, to avert multiple reflections. These square-wave-modulated metasurfaces are referred to as checkerboard metasurface LWAs, whose radiation and scattering characteristics, for normal incidence parallel polarization, are analyzed and measured.
ContributorsRamalingam, Subramanian (Author) / Balanis, Constantine A. (Thesis advisor) / Aberle, James T. (Committee member) / Palais, Joseph C. (Committee member) / Trichopoulos, Georgios C. (Committee member) / Arizona State University (Publisher)
Created2020
158751-Thumbnail Image.png
Description
Within the past two decades, metasurfaces, with their unique ability to tailor the wavefront, have attracted scientific attention. Along with many other research areas, RADAR cross-section (RCS)-reduction techniques have also benefited from metasurface technology.

In this dissertation, a novel technique to synthesize the RCS-reduction metasurfaces is presented. This technique unifies the

Within the past two decades, metasurfaces, with their unique ability to tailor the wavefront, have attracted scientific attention. Along with many other research areas, RADAR cross-section (RCS)-reduction techniques have also benefited from metasurface technology.

In this dissertation, a novel technique to synthesize the RCS-reduction metasurfaces is presented. This technique unifies the two most widely studied and two well-established modern RCS-reduction methods: checkerboard RCS-reduction andgradient-index RCS-reduction. It also overcomes the limitations associated with these RCS-reduction methods. It synthesizes the RCS-reduction metasurfaces, which can be juxtaposed with almost any existing metasurface, to reduce its RCS. The proposed technique is fundamentally based on scattering cancellation. Finally, an example of the RCS-reduction metasurface has been synthesized and introduced to reduce the RCS of an existing high-gain metasurface ground plane.

After that, various ways of obtaining ultrabroadband RCS-reduction using the same technique are proposed, which overcome the fundamental limitation of the conventional checkerboard metasurfaces, where the reflection phase difference of (180+-37) degrees is required to achieve 10-dB RCS reduction. First, the guideline on how to select Artificial Magnetic Conductors (AMCs) is explained with an example of a blended checkerboard architecture where a 10-dB RCS reduction is observed over 83% of the bandwidth. Further, by modifying the architecture of the blended checkerboard metasurface, the 10-dB RCS reduction bandwidth increased to 91% fractional bandwidth. All the proposed architectures are validated using measured data for fabricated prototypes. Critical steps for designing the ultrabroadband RCS reduction checkerboard surface are summarized.

Finally, a broadband technique to reduce the RCS of complex targets is presented. By using the proposed technique, the problem of reducing the RCS contribution from such multiple-bounces simplifies to identifying and implementing a set of orthogonal functions. Robust guidelines for avoiding grating lobes are provided using array theory. The 90 degree dihedral corner is used to verify the proposed technique. Measurements are reported for a fabricated prototype, where a 70% RCS-reduction bandwidth is observed. To generalize the method, a 45 degree dihedral corner, with a quadruple-bounce mechanism, is considered. Generalized guidelines are summarized and applied to reduce the RCS of complex targets using the proposed method.
ContributorsModi, Anuj (Author) / Balanis, Constantine A. (Thesis advisor) / Palais, Joseph C. (Committee member) / Aberle, James T. (Committee member) / Trichopoulos, Georgios C. (Committee member) / Arizona State University (Publisher)
Created2020