Matching Items (2)
Filtering by

Clear all filters

153573-Thumbnail Image.png
Description
Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis

Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS for the analysis of conformability. With thorough investigation into the conformability of Fermat’s spiral, it has been found that the kirigami based pattern exhibits high conformability. Since thickness is a key factor to design skin electronics, the thesis also talked about how the change of thickness of the skin electronics impacts on the conformability.
ContributorsFan, Yiling (Author) / Jiang, Hanqing (Thesis advisor) / Hildreth, Owen (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
158675-Thumbnail Image.png
Description
Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance

Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance electronics. The interconnects available in the market today only satisfy a few of the desirable characteristics, making it necessary to compromise one feature over another. In this thesis, a method to prepare a thin, flexible, and stretchable inter-connect is presented with improved conductivity compared to previous achievements. It satisfies most mechanical and electrical conditions desired in the wearable electronics industry. The conducting composite, prepared with the widely available, low cost silicon-based organic polymer - polydimethylsiloxane (PDMS) and silver (Ag), is sandwiched between two cured PDMS layers. These protective layers improve the mechanical stability of the inter-connect. The structure can be stretched up to 120% of its original length which can further be enhanced to over 250% by cutting it into a serpentine shape without compromising its electrical stability. The inter-connect, around 500 µm thick, can be integrated into thin electronic packaging. The synthesis process of the composite material, along with its electrical and mechanical and properties are presented in detail. Testing methods and results for mechanical and electrical stability are also illustrated over extensive flexing and stretching cycles. The materials put into test, along with conductive silver (Ag) - polydimethylsiloxane (PDMS) composite in a sandwich structure, are copper foils, copper coated polyimide (PI) and aluminum (Al) coated polyethylene terephthalate (PET).
ContributorsNandy, Mayukh (Author) / Yu, Hongbin (Thesis advisor) / Chan, Candace (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020