Matching Items (2)
Filtering by

Clear all filters

152932-Thumbnail Image.png
Description
The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and

The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites.
ContributorsKachala, Robert (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
154457-Thumbnail Image.png
Description
This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion

This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion properties of quartz and light weight aggregates of size 600μm obtained from literature were made use of to study the effect of their material (including inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and geometric properties (volume fraction of inclusion, particle size distribution of inclusion and thickness of the interfacial transition zone) on the composite. Traction-separation relationship was used to incorporate the effect of debonding at the interface of the matrix and the inclusion to study the effect on stress distribution in the microstructure. The stress distributions observed upon conducting a finite element analysis are caused due to the stiffness mismatch in both the quartz and the light weight aggregates as expected. The constitutive response of the composite microstructure is found to be in good conformance with semi-analytical models as well as experimental values. The effect of debonding throws up certain important observations on the stress distributions in the microstructure based on the stress concentrations and relaxations caused by the stiffness of the individual components of the microstructure. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the composite constitutive response.
ContributorsMaroli, Amit (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016