Matching Items (3)

Filtering by

Clear all filters

151957-Thumbnail Image.png

Propensity score estimation with random forests

Description

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.

Contributors

Agent

Created

Date Created
  • 2013

152888-Thumbnail Image.png

Action research approach to implementation of APDMs within owner organizations strategic management and overcoming resistance to change in the AEC industry

Description

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management effort. Research in the field of organizational behavior cautions that perhaps more than half of all organizational change efforts fail to accomplish their intended objectives. This study utilizes an action research approach to analyze change message delivery within owner organizations, model owner project team readiness and adoption of change, and identify the most frequently encountered types of resistance from lead project members. The analysis methodology included Spearman's rank order correlation, variable selection testing via three methods of hierarchical linear regression, relative weight analysis, and one-way ANOVA. Key findings from this study include recommendations for communicating the change message within owner organizations, empirical validation of critical predictors for change readiness and change adoption among project teams, and identification of the most frequently encountered resistive behaviors within change implementation in the AEC industry. A key contribution of this research is the recommendation of change management strategies for use by change practitioners.

Contributors

Agent

Created

Date Created
  • 2014

154216-Thumbnail Image.png

Measurement systems analysis studies: a look at the partition of variation (POV) method

Description

The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the

The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the means (between variance) and the means of the variance (within variance). The project shows that the method correctly identifies the variance source when compared to the ANOVA method. Although the variance estimators deteriorate when varying degrees of non-normality is introduced through simulation; however, the POV method is shown to be a more stable measure of variance in the aggregate. The POV method also provides non-negative, stable estimates for interaction when compared to the ANOVA method. The POV method is shown to be more stable, particularly in low sample size situations. Based on these findings, it is suggested that the POV is not a replacement for more complex analysis methods, but rather, a supplement to them. POV is ideal for preliminary analysis due to the ease of implementation, the simplicity of interpretation, and the lack of dependency on statistical analysis packages or statistical knowledge.

Contributors

Agent

Created

Date Created
  • 2015