Matching Items (2)
Filtering by

Clear all filters

187696-Thumbnail Image.png
Description
Drylands cover over 40% of the Earth’s surface, account for one third of global carbon cycling, and are hotspots for climate change, with more frequent and severe droughts coupled with deluges of novel magnitude and frequency. Because of their large terrestrial extent, elucidating dryland ecosystem responses to changes in water

Drylands cover over 40% of the Earth’s surface, account for one third of global carbon cycling, and are hotspots for climate change, with more frequent and severe droughts coupled with deluges of novel magnitude and frequency. Because of their large terrestrial extent, elucidating dryland ecosystem responses to changes in water availability is critical for a comprehensive understanding of controls on global aboveground net primary productivity (ANPP), an important ecosystem service. The focus of this dissertation is to investigate cause-effect mechanisms between altered water availability and ecosystem processes in dryland ecosystems. Across a network of experimental rainfall manipulations within a semiarid Chihuahuan Desert grassland, I examined short- and long-term dynamics of multiple ecosystem processes—from plant phenology to nitrogen cycling—in response to directional precipitation extremes. Aboveground, I found herbaceous plant phenology to be more sensitive in greenup timing compared to deep-rooted, woody shrubs, implying that precipitation extremes will disproportionately affect grass-dominated compared to woody ecosystems. Surprisingly, after 14 years of experimentally adding water and N, I observed no effect on ANPP. Belowground, bulk soil N dynamics remained stable with differing precipitation amounts. However, mineral associated organic N (MAOM-N) significantly increased under chronic N inputs, indicating potential for dryland soil N sequestration. Conversely, the difference between low- and high-N soil N content may increase a drawdown of N from all soil N pools under low-N conditions whereas plants source N from fertilizer input under high-N conditions. Finally, I considered ecosystem-level acclimation to climate change. I found that N availability decreased with annual precipitation in space across continents, but it posed initially increasing trends in response to rainfall extremes at the Jornada that decreased after 14 years. Mechanisms for the acclimation process are thus likely associated with differential lags to changes in precipitation between plants and microorganisms. Overall, my dissertation demonstrates that examining linkages between multiple ecosystem processes, from aboveground phenological cycles to belowground N cycling dynamics, can provide a more integrative understanding of dryland response to climate change. Because dryland range is potentially expanding globally, water limited systems provide a unique and critical focus area for future research that revisit and revise current ecological paradigms.
ContributorsCurrier, Courtney (Author) / Sala, Osvaldo (Thesis advisor) / Collins, Scott (Committee member) / Reed, Sasha (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2023
158082-Thumbnail Image.png
Description
Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody

Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody plant species in areas formerly dominated by grasslands or savannahs. For example, the woody plant, Prosopis velutina (velvet mesquite), has encroached into grasslands regionally over the past century. From an agricultural perspective, P. velutina is an invasive weed that hinders cattle forage. Understanding how P. velutina will respond to climate change-induced rainfall changes can be useful for management and conservation efforts. Prosopis velutina was used to answer the following question: Is there a significant interactive effect of mean soil water moisture content and pulse frequency on woody seedling survival and growth in dryland ecosystems? There were 256 P. velutina seedlings sourced from the Santa Rita Experimental Range in southern Arizona grown under four watering treatments where mean and pulse frequency were manipulated over two months. Data were collected on mortality, stem height, number of leaves, instantaneous gas exchange, chlorophyll fluorescence, biomass, and the leaf carbon to nitrogen (C:N) ratio. Mortality was low across treatments. Pulse frequency had less impact across response variables than the mean amount of water received. This may indicate that P. velutina seedlings are relatively insensitive to rainfall timing and are more responsive to rainfall amount. Prosopis velutina in the low mean soil moisture treatments lost a majority of their leaves and had greater biomass allocation to roots. Prosopis velutina’s ability to survive in low soil moisture conditions and invest in root biomass can allow it to persist as drylands are further affected by climate change. Prosopis velutina could benefit ecosystems where native plants are at risk due to rainfall variation if P. velutina occupies a similar niche space. Due to conflicting viewpoints of P. velutina as an invasive species, it’s important to examine P. velutina from both agricultural and conservation perspectives. Further analysis on the benefits to P. velutina in these ecosystems is recommended.
ContributorsDavis, Ashley R. (Author) / Throop, Heather (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Arizona State University (Publisher)
Created2020