Matching Items (2)
151818-Thumbnail Image.png
Description
Understanding agricultural land use requires the integration of natural factors, such as climate and nutrients, as well as human factors, such as agricultural intensification. Employing an agroecological framework, I use the Perry Mesa landscape, located in central Arizona, as a case study to explore the intersection of these factors to

Understanding agricultural land use requires the integration of natural factors, such as climate and nutrients, as well as human factors, such as agricultural intensification. Employing an agroecological framework, I use the Perry Mesa landscape, located in central Arizona, as a case study to explore the intersection of these factors to investigate prehistoric agriculture from A.D. 1275-1450. Ancient Perry Mesa farmers used a runoff agricultural strategy and constructed extensive alignments, or terraces, on gentle hillslopes to slow and capture nutrient rich surface runoff generated from intense rainfall. I investigate how the construction of agricultural terraces altered key parameters (water and nutrients) necessary for successful agriculture in this arid region. Building upon past work focused on agricultural terraces in general, I gathered empirical data pertaining to nutrient renewal and water retention from one ancient runoff field. I developed a long-term model of maize growth and soil nutrient dynamics parameterized using nutrient analyses of runoff collected from the sample prehistoric field. This model resulted in an estimate of ideal field use and fallow periods for maintaining long-term soil fertility under different climatic regimes. The results of the model were integrated with estimates of prehistoric population distribution and geographical characterizations of the arable lands to evaluate the places and periods when sufficient arable land was available for the type of cropping and fallowing systems suggested by the model (given the known climatic trends and land use requirements). Results indicate that not only do dry climatic periods put stress on crops due to reduced precipitation but that a reduction in expected runoff events results in a reduction in the amount of nutrient renewal due to fewer runoff events. This reduction lengthens estimated fallow cycles, and probably would have increased the amount of land necessary to maintain sustainable agricultural production. While the overall Perry Mesa area was not limited in terms of arable land, this analysis demonstrates the likely presence of arable land pressures in the immediate vicinity of some communities. Anthropological understandings of agricultural land use combined with ecological tools for investigating nutrient dynamics provides a comprehensive understanding of ancient land use in arid regions.
ContributorsKruse-Peeples, Melissa R (Author) / Spielmann, Katherine A. (Thesis advisor) / Abbott, David R. (Committee member) / Hall, Sharon J. (Committee member) / Kintigh, Keith W. (Committee member) / Arizona State University (Publisher)
Created2013
129704-Thumbnail Image.png
Description

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date,

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date, PFP conservation in the U.S. has only been applied in small pilot programs. Because monitoring conservation performance for each field enrolled in a program would be cost-prohibitive, field-level modeling can provide cost-effective estimates of anticipated improvements in nutrient runoff. We developed a PFP system that uses a unique application of one of the leading agricultural models, the USDA's Soil and Water Assessment Tool, to evaluate the nutrient load reductions of potential farm practice changes based on field-level agronomic and management data. The initial phase of the project focused on simulating individual fields in the River Raisin watershed in southeastern Michigan. Here we present development of the modeling approach and results from the pilot year, 2015-2016. These results stress that (1) there is variability in practice effectiveness both within and between farms, and thus there is not one "best practice" for all farms, (2) conservation decisions are made most effectively at the scale of the farm field rather than the sub-watershed or watershed level, and (3) detailed, field-level management information is needed to accurately model and manage on-farm nutrient loadings.

ContributorsMuenich, Rebecca (Author) / Kalcic, M. M. (Author) / Winsten, J. (Author) / Fisher, K. (Author) / Day, M. (Author) / O'Neil, G. (Author) / Wang, Y.-C. (Author) / Scavia, D. (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017