Matching Items (2)
Filtering by

Clear all filters

151315-Thumbnail Image.png
Description
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater

The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
ContributorsNichols, Patricia (Author) / Ning, Cun-Zheng (Thesis advisor) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
157723-Thumbnail Image.png
Description
Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular, MoS2 which is the most widely studied TMDC material, have

Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular, MoS2 which is the most widely studied TMDC material, have attracted significant attention in recent years due to their unique physical, electronic, optical, and chemical properties that depend on the number of layers. Due to their high aspect ratios and extreme thinness, 2D materials are sensitive to modifications via chemistry on their surfaces. For instance, covalent functionalization can be used to robustly modify the electronic properties of 2D materials, and can also be used to attach other materials or structures. Metal adsorption on the surfaces of 2D materials can also tune their electronic structures, and can be used as a strategy for removing metal contaminants from water. Thus, there are many opportunities for studying the fundamental surface interactions of 2D materials and in particular the TMDCs and PCs.

The work reported in this dissertation represents detailed fundamental studies of the covalent functionalization and metal adsorption behavior of layered chalcogenides, which are two significant aspects of the surface interactions of 2D materials. First, we demonstrate that both the Freundlich and Temkin isotherm models, and the pseudo-second-order reaction kinetics model are good descriptors of the reaction due to the energetically inhomogeneous surface MoS2 and the indirect adsorbate-adsorbate interactions from previously attached nitrophenyl (NP) groups. Second, the covalent functionalization using aryl diazonium salts is extended to nanosheets of other representative TMDC materials MoSe2, WS2, and WSe2, and of the representative PC materials Bi2S3 and Sb2S3, demonstrated using atomic force microscopy (AFM) imaging and Fourier transform infrared spectroscopy (FTIR). Finally, using AFM and X-ray photoelectron spectroscopy (XPS), it is shown that Pb, Cd Zn and Co form nanoclusters on the MoS2 surface without affecting the structure of the MoS2 itself. The metals can also be thermally desorbed from MoS2, thus suggesting a potential application as a reusable water purification technology.
ContributorsLi, Duo, Ph.D (Author) / Wang, Qing Hua (Thesis advisor) / Green, Alexander A. (Committee member) / Chan, Candace K. (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2019