Matching Items (11)

151324-Thumbnail Image.png

Stochastic optimization and real-time scheduling in cyber-physical systems

Description

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.

Contributors

Agent

Created

Date Created
2012

153597-Thumbnail Image.png

Test-based falsification and conformance testing for cyber-physical systems

Description

In this dissertation, two problems are addressed in the verification and control of Cyber-Physical Systems (CPS):

1) Falsification: given a CPS, and a property of interest that the CPS must satisfy under all allowed operating conditions, does the CPS violate, i.e.

In this dissertation, two problems are addressed in the verification and control of Cyber-Physical Systems (CPS):

1) Falsification: given a CPS, and a property of interest that the CPS must satisfy under all allowed operating conditions, does the CPS violate, i.e. falsify, the property?

2) Conformance testing: given a model of a CPS, and an implementation of that CPS on an embedded platform, how can we characterize the properties satisfied by the implementation, given the properties satisfied by the model?

Both problems arise in the context of Model-Based Design (MBD) of CPS: in MBD, the designers start from a set of formal requirements that the system-to-be-designed must satisfy.

A first model of the system is created.

Because it may not be possible to formally verify the CPS model against the requirements, falsification tries to verify whether the model satisfies the requirements by searching for behavior that violates them.

In the first part of this dissertation, I present improved methods for finding falsifying behaviors of CPS when properties are expressed in Metric Temporal Logic (MTL).

These methods leverage the notion of robust semantics of MTL formulae: if a falsifier exists, it is in the neighborhood of local minimizers of the robustness function.

The proposed algorithms compute descent directions of the robustness function in the space of initial conditions and input signals, and provably converge to local minima of the robustness function.

The initial model of the CPS is then iteratively refined by modeling previously ignored phenomena, adding more functionality, etc., with each refinement resulting in a new model.

Many of the refinements in the MBD process described above do not provide an a priori guaranteed relation between the successive models.

Thus, the second problem above arises: how to quantify the distance between two successive models M_n and M_{n+1}?

If M_n has been verified to satisfy the specification, can it be guaranteed that M_{n+1} also satisfies the same, or some closely related, specification?

This dissertation answers both questions for a general class of CPS, and properties expressed in MTL.

Contributors

Agent

Created

Date Created
2015

Model-based development of multi-iRobot simulation and control

Description

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical System Laboratory at Arizona State University. The MBDMIRT toolbox runs under MATLAB/Simulink to simulate the movements of multiple iRobots and to control, after verification by simulation, multiple physical iRobots accordingly. It adopts the Simulink/Stateflow, which exemplifies an approach to MBD, to program the behaviors of the iRobots. The MBDMIRT toolbox reuses and augments the open-source MATLAB-Based Simulator for the iRobot Create from Cornell University to run the simulation. Regarding the mechanism of iRobot control, the MBDMIRT toolbox applies the MATLAB Toolbox for the iRobot Create (MTIC) from United States Naval Academy to command the physical iRobots. The MBDMIRT toolbox supports a timer in both the simulation and the control, which is based on the local clock of the PC running the toolbox. In addition to the build-in sensors of an iRobot, the toolbox can simulate four user-added sensors, which are overhead localization system (OLS), sonar sensors, a camera, and Light Detection And Ranging (LIDAR). While controlling a physical iRobot, the toolbox supports the StarGazer OLS manufactured by HAGISONIC, Inc.

Contributors

Agent

Created

Date Created
2012

151405-Thumbnail Image.png

Model based safety analysis and verification of cyber-physical systems

Description

Critical infrastructures in healthcare, power systems, and web services, incorporate cyber-physical systems (CPSes), where the software controlled computing systems interact with the physical environment through actuation and monitoring. Ensuring software safety in CPSes, to avoid hazards to property and human

Critical infrastructures in healthcare, power systems, and web services, incorporate cyber-physical systems (CPSes), where the software controlled computing systems interact with the physical environment through actuation and monitoring. Ensuring software safety in CPSes, to avoid hazards to property and human life as a result of un-controlled interactions, is essential and challenging. The principal hurdle in this regard is the characterization of the context driven interactions between software and the physical environment (cyber-physical interactions), which introduce multi-dimensional dynamics in space and time, complex non-linearities, and non-trivial aggregation of interaction in case of networked operations. Traditionally, CPS software is tested for safety either through experimental trials, which can be expensive, incomprehensive, and hazardous, or through static analysis of code, which ignore the cyber-physical interactions. This thesis considers model based engineering, a paradigm widely used in different disciplines of engineering, for safety verification of CPS software and contributes to three fundamental phases: a) modeling, building abstractions or models that characterize cyberphysical interactions in a mathematical framework, b) analysis, reasoning about safety based on properties of the model, and c) synthesis, implementing models on standard testbeds for performing preliminary experimental trials. In this regard, CPS modeling techniques are proposed that can accurately capture the context driven spatio-temporal aggregate cyber-physical interactions. Different levels of abstractions are considered, which result in high level architectural models, or more detailed formal behavioral models of CPSes. The outcomes include, a well defined architectural specification framework called CPS-DAS and a novel spatio-temporal formal model called Spatio-Temporal Hybrid Automata (STHA) for CPSes. Model analysis techniques are proposed for the CPS models, which can simulate the effects of dynamic context changes on non-linear spatio-temporal cyberphysical interactions, and characterize aggregate effects. The outcomes include tractable algorithms for simulation analysis and for theoretically proving safety properties of CPS software. Lastly a software synthesis technique is proposed that can automatically convert high level architectural models of CPSes in the healthcare domain into implementations in high level programming languages. The outcome is a tool called Health-Dev that can synthesize software implementations of CPS models in healthcare for experimental verification of safety properties.

Contributors

Agent

Created

Date Created
2012

154276-Thumbnail Image.png

Design and synthesis of a hierarchical hybrid controller for quadrotor navigation

Description

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the mission specification. However, most of these works use first-order kinematic models which are not accurate when quadrotors fly at high speed and cannot fully utilize the potential of quadrotors.

This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.

Contributors

Agent

Created

Date Created
2016

154694-Thumbnail Image.png

Improving AI planning by using extensible components

Description

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process.

Contributors

Agent

Created

Date Created
2016

155975-Thumbnail Image.png

From Formal Requirement Analysis to Testing and Monitoring of Cyber-Physical Systems

Description

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are addressed. The first method provides a formal requirement analysis framework which can find logical issues in the requirements and help engineers to correct the requirements. Also, a method is provided to detect tests which vacuously satisfy the requirement because of the requirement structure. This method is used to improve the test generation framework for CPS. Finally, two runtime verification algorithms are developed for off-line/on-line monitoring with respect to real-time requirements. These monitoring algorithms are computationally efficient, and they can be used in practical applications for monitoring CPS with low runtime overhead.

Contributors

Agent

Created

Date Created
2017

157060-Thumbnail Image.png

Search-based Test Generation for Automated Driving Systems: From Perception to Control Logic

Description

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving.

One of the expectations from fully-automated vehicles is never to cause an accident. However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions caused by other road occupants. Hence, it is important for the system designers to understand the boundary case scenarios where an autonomous vehicle can no longer avoid a collision. Besides safety, there are other expectations from automated vehicles such as comfortable driving and minimal fuel consumption. All safety and functional expectations from an automated driving system should be captured with a set of system requirements. It is challenging to create requirements that are unambiguous and usable for the design, testing, and evaluation of automated driving systems. Another challenge is to define useful metrics for assessing the testing quality because in general, it is impossible to test every possible scenario.

The goal of this dissertation is to formalize the theory for testing automated vehicles. Various methods for automatic test generation for automated-driving systems in simulation environments are presented and compared. The contributions presented in this dissertation include (i) new metrics that can be used to discover the boundary cases between safe and unsafe driving conditions, (ii) a new approach that combines combinatorial testing and optimization-guided test generation methods, (iii) approaches that utilize global optimization methods and random exploration to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a publicly-available simulation-based automated vehicle testing framework that enables application of the existing testing approaches in the literature, including the new approaches presented in this dissertation.

Contributors

Agent

Created

Date Created
2019

155738-Thumbnail Image.png

Formal Requirements-Driven Analysis of Cyber Physical Systems

Description

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.

Contributors

Agent

Created

Date Created
2017

161251-Thumbnail Image.png

Co-simulation of Cyber-Physical Systems Using DEVS and Functional Mockup Units

Description

Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation

Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation can often be challenging. In this thesis, the Functional Markup Interface (FMI) is used to develop an adapter called DEVS-FMI for the DEVS-Suite simulator. The adapter, implemented using JavaFMI 2.0, allows any Functional Mock-Up Unit (FMU) to be co-simulated with a Discrete Event System Specification (DEVS) model. This approach enables taking advantage of the parallel DEVS formalism to model cyber systems and using Modelica to model physical systems. An FMU serves as a slave simulator while the DEVS-Suite serves as a master simulator. The Four-Variable model is used as a guide to define the requirements for the inputs and outputs of actuator and sensor devices used in cyber and physical systems. The input and output data as non-functional abstractions of the sensor and actuator devices. Select cyber and physical parts of an electric scooter are chosen, modeled, simulated, and evaluated using the integrated OpenModelica and the DEVS-Suite simulators. Closely related research is briefly examined and expanding this work with support for implicit state-changes for continuous models and distributed co-simulation is noted.

Contributors

Agent

Created

Date Created
2021