Matching Items (3)
Filtering by

Clear all filters

151520-Thumbnail Image.png
Description
In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical

In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical format of the nation's food guide has evolved from a pyramid shape into a circular plate. The objective of this research was to examine the post-2002 literature regarding the bioavailability of key nutrients in vegetarian diets; to use this information to update the recommendations made in the 2002 Modified Food Guide Pyramid for Lacto-ovo-vegetarians and Vegans; and to adapt this revised food plan to the new USDA MyPlate format. This process involved reviewing the scientific literature to determine if the DRIs for the nutrients of key concern in vegetarian diets are adequate for the vegetarian population and using this information to develop new recommendations for vegetarians if necessary, analyzing the nutrient content of representative foods in different food groups, reconfiguring the food groups so that foods with like nutrient components were grouped together, determining the number of servings of each food group required to meet vegetarians' nutrient requirements at three caloric levels, and developing sample menus. A circular plate graphic, the Vegetarian Plate, was designed to illustrate the recommendations of this updated food guide. This updated, scientifically derived food guide provides a sound base for diet planning for lacto-ovo-vegetarians and vegans. Further research is needed to assess the Vegetarian Plate's adequacy for children, pregnant and lactating women, athletes, and individuals with medical conditions or chronic diseases.
ContributorsFladell, Lauren (Author) / Johnston, Carol (Thesis advisor) / Vaughan, Linda (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2013
157192-Thumbnail Image.png
Description
According to a 2016 census, eight million adults conform to a vegetarian diet within the United States, and about 50% of these adults follow a vegan diet. The census determined that plant-based diets are quickly growing in popularity particularly in young adults between the ages of 18 to 34 years.

According to a 2016 census, eight million adults conform to a vegetarian diet within the United States, and about 50% of these adults follow a vegan diet. The census determined that plant-based diets are quickly growing in popularity particularly in young adults between the ages of 18 to 34 years. Many Americans are aware of the health benefits of a plant-based diet, however, the dietary risks associated with these diets are not well emphasized. Health concerns such as vitamin deficiencies and altered metabolism are heightened in vegetarian populations.

One Particular nutrient that is commonly lacking in the vegetarian diet is vitamin B12. Vitamin B12 is found mainly in animal-derived food sources such as meat, poultry, fish, dairy, and eggs. Although some vegetarians, called lacto-ovo vegetarians, consume dairy and eggs, vegans do not consume any animal products at all. Vitamin B12 deficiency can have devastating consequences on the human body due to its role as a methylation cofactor. Metabolism, DNA replication, and cancer formation all involve methylation processes.

This cross-sectional, differential study aimed to further understand the relationship between vegetarianism, vitamin B12 status, and methylation capacity in healthy adults. A group of 34 healthy adults (18 vegetarians and 16 omnivores) was recruited to analyze serum B12, homocysteine, methylmalonic acid, serum total folate, and transcobalamin II status. It was hypothesized that (1) vegetarians would have a lower vitamin B12 status, and thus, a lower methylation capacity than omnivores and that (2) low vitamin B12 status would be correlated with low methylation capacity.

The data show that vegetarians did not have significantly lower vitamin B12 methylation capacity status than omnivores. Nor was vitamin B12 status correlated with methylation capacity. However, the data revealed that diet quality had a positive influence on folate status. There was also a statistical trend (p=0.08) for homocysteine reduction in participants consuming high-quality diets. The data herein suggest that methylation capacity may be impacted by the quality of diet rather than the type of diet.
ContributorsUgarte, Noel (Author) / Johnston, Carol S (Thesis advisor) / Whisner, Corrie (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2019
168585-Thumbnail Image.png
Description
Background: Vegan and vegetarian diets have gained in popularity in recent years. Stated reasons for this include some possible health benefits and concerns of animal welfare. Though considered to be nutritionally adequate, questions remain over whether current protein recommendations of 0.8 g/kg/d are sufficient to maintain body processes and growth.

Background: Vegan and vegetarian diets have gained in popularity in recent years. Stated reasons for this include some possible health benefits and concerns of animal welfare. Though considered to be nutritionally adequate, questions remain over whether current protein recommendations of 0.8 g/kg/d are sufficient to maintain body processes and growth. Protein is unique in that it is the only macronutrient that contains nitrogen. Its status can be determined through nitrogen balance analysis of the urine if protein content of the diet is known. Nitrogen balance is considered the gold standard for determining protein intake requirements. A negative balance indicates a catabolic state, whereas a positive nitrogen balance is seen during anabolism. In healthy people, nitrogen equilibrium is desired under normal circumstances. This equilibrium reflects the net synthesis and breakdown of proteins. While nitrogen balance techniques have been used for decades, currently, there are no known studies measuring nitrogen balance and protein intake in strict vegans. Methods: Twenty vegan, inactive, male participants were recruited and received a 5-day eucaloric diet with a known protein content held constant at 0.8 g/kg/d. On day five, 24-hour urine was collected by participants and aliquoted for future analysis. Nitrogen content of the urine was determined through photometric assay and compared to the known nitrogen content of the diet to calculate nitrogen balance status. Results: Mean absolute nitrogen balance (-1.38 ± 1.22 g/d, effect size = -1.13) was significantly lower than zero (equilibrium) (p < .001). Mean relative nitrogen balance (-18.60 ± 16.96 mg/kg/d, effect size = -1.10) was significantly lower than zero (p < .001). There were no correlations seen between nitrogen balance and age, years as vegan, or fat- free mass. Conclusion: Consuming 0.8 g/kg/d of protein is insufficient to produce nitrogen balance in long-term vegans.
ContributorsBartholomae, Eric (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Wharton, Christopher (Committee member) / Lee, Chong (Committee member) / Kressler, Jochen (Committee member) / Arizona State University (Publisher)
Created2022