Matching Items (4)
Filtering by

Clear all filters

151723-Thumbnail Image.png
Description
The objective of the present investigations is to experimentally determine the fundamental molecular properties of the transient metal containing pieces. The transient molecules have been generated using laser ablation production technique and detected by using laser induced fluorescence technique. Ultra-high resolution spectra of the diatomic molecules, 87SrF, 135&137BaF, YbF, HfF,

The objective of the present investigations is to experimentally determine the fundamental molecular properties of the transient metal containing pieces. The transient molecules have been generated using laser ablation production technique and detected by using laser induced fluorescence technique. Ultra-high resolution spectra of the diatomic molecules, 87SrF, 135&137BaF, YbF, HfF, and IrSi were recorded at a resolution of approximately 30 Mhz. The fine and hyperfine structure of these molecules were determined for the ground and the excited state. The optical Stark splittings of 180HfF and IrSi were recorded and analyzed to determine the permanent electric dipole moments of the ground and the excited state. An effective Hamiltonian operator, including the rotational, centrifugal distortion, spin-orbit, spin-spin, spin-rotation, Λ-doubling, magnetic hyperfine and quadrupole interactions, and Stark effect, was employed to model and analyze the recorded spectra. The electronic spectra of the triatomic molecules, TiO2 and ZrO2, were recorded using pulsed dye laser, LIF, spectrometer at a resolution of 300MHz. These molecules have C2v symmetry. The harmonic frequencies, lifetime measurements were determined. These spectra of ZrO2 and TiO2 were modeled using a normal coordinate analysis and Franck-Condon factor predictions. High resolution field-free and Stark effect spectra of ZrO2 were recorded and for future investigation.
ContributorsLe, Anh Thun (Author) / Steimle, Timothy C (Thesis advisor) / Richert, Ranko (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
151277-Thumbnail Image.png
Description
This thesis describes the studies for two groups of molecules in the gas-phase: (a) copper monofluoride (CuF) and copper hydroxide (CuOH); (b) thorium monoxide (ThO) and tungsten carbide (WC). Copper-containing molecules (Group a) are selected to investigate the ionic bonding in transition metal-containing molecules because they have a relatively simple

This thesis describes the studies for two groups of molecules in the gas-phase: (a) copper monofluoride (CuF) and copper hydroxide (CuOH); (b) thorium monoxide (ThO) and tungsten carbide (WC). Copper-containing molecules (Group a) are selected to investigate the ionic bonding in transition metal-containing molecules because they have a relatively simple electronic state distribution due to the nearly filled 3d-orbital. ThO and WC (Group b) are in support of particle physics for the determination of electron electric dipole moment (eEDM), de, the existence of which indicates new physics beyond the Standard Model. The determination of the tiny eEDM requires large electric fields applied to the electron. The 3(Delta)1 states for heavy polar molecules were proposed [E. R. Meyer, J. L. Bohn, and M. P. Deskevich, Phys. Rev. A 73, 062108 (2006)] to determine de with the following attractive features: (1) large electric dipole moments; (2) large internal electric fields, Eeff, experienced by valence electrons; (3) nearly degenerate omega-doublets; (4) extremely small magnetic dipole moments. The H3(Delta)1 state for ThO and the X3(Delta)1 state for WC are both good candidates. Spectroscopic parameters (i.e. molecular electric and magnetic dipole moments, omega-doubling parameters, etc) are required for the 3(Delta)1 states of ThO and WC. High resolution optical spectra (linewidth ~50 MHz) of CuF, CuOH, ThO and WC were recorded field-free and in the presence of a static electric field (or magnetic field) using laser ablation source/supersonic expansion and laser induced fluorescence (LIF) detection. The spectra were modeled by a zero-field effective Hamiltonian operator and a Stark (or Zeeman) Hamiltonian operator with various molecular parameters. The determined molecular parameters are compared to theoretical predictions. The small omega-doubling parameter was well determined using the pump/probe microwave optical double resonance (PPMODR) technique with a much higher resolution (linewidth ~60 kHz) than optical spectroscopy. In addition to the above mentioned studies of the two groups of molecules, a resonance enhanced multi-photon ionization (REMPI) combined with a time-of-flight mass spectrometer (TOFMS) has been developed to identify the molecules responsible for observed LIF signals. The operation of this spectrometer has been tested by recording the mass spectrum of Ti/O2 and the REMPI spectrum for TiO using a two-color excitation scheme.
ContributorsWang, Fang (Author) / Steimle, Timothy C (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2012
154771-Thumbnail Image.png
Description
How water behaves at interfaces is relevant to many scientific and technological applications; however, many subtle phenomena are unknown in aqueous solutions. In this work, interfacial structural transition in hydration shells of a polarizable solute at critical polarizabilities is discovered. The transition is manifested in maximum water response, the reorientation

How water behaves at interfaces is relevant to many scientific and technological applications; however, many subtle phenomena are unknown in aqueous solutions. In this work, interfacial structural transition in hydration shells of a polarizable solute at critical polarizabilities is discovered. The transition is manifested in maximum water response, the reorientation of the water dipoles at the interface, and an increase in the density of dangling OH bonds. This work also addresses the role of polarizability of the active site of proteins in biological catalytic reactions. For proteins, the hydration shell becomes very heterogeneous and involves a relatively large number of water molecules. The molecular dynamics simulations show that the polarizability, along with the atomic charge distribution, needs to be a part of the picture describing how enzymes work. Non Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are also analyzed.



Additionally, a theoretical formalism is presented to show that when preferential orientations of water dipoles exist at the interface, electrophoretic charges can be produced without free charge carriers, i.e., neutral solutes can move in a constant electric field due to the divergence of polarization at the interface. Furthermore, the concept of interface susceptibility is introduced. It involves the fluctuations of the surface charge density caused by thermal motion and its correlation over the characteristic correlation length with the fluctuations of the solvent charge density. Solvation free energy and interface dielectric constant are formulated accordingly. Unlike previous approaches, the solvation free energy scales quite well in a broad range of ion sizes, namely in the range of 2-14 A° . Interface dielectric constant is defined such that the boundary conditions in the Laplace equation describing a micro- or mesoscopic interface are satisfied. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value. Molecular dynamics simulation results show that the interface dielectric constant for a TIP3P water model changes from nine to four when the effective solute radius is increased from 5 A° to 18 A° . The small value of the interface dielectric constant of water has potentially dramatic consequences for hydration.
ContributorsDinpajooh, Mohammadhasan (Author) / Matyushov, Dmitry V (Thesis advisor) / Richert, Ranko (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2016