Matching Items (6)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
153606-Thumbnail Image.png
Description
Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of

Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of scaling, preventing flash from improving. To combat the limitations of flash and to appease consumer demand for progressively faster and denser NVM, new technologies are needed. One possible candidate for the replacement of NAND Flash is programmable metallization cells (PMC). PMC are a type of resistive memory, meaning that they do not rely on charge storage to maintain a logic state. Depending on their application, it is possible that devices containing NVM will be exposed to harsh radiation environments. As part of the process for developing a novel memory technology, it is important to characterize the effects irradiation has on the functionality of the devices.

This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.

The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.
ContributorsTaggart, Jennifer Lynn (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2015
154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
ContributorsGogulamudi, Anudeep Reddy (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2016
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
154899-Thumbnail Image.png
Description
Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This thesis describes the simulation techniques used to analyze and predict total ionizing dose (TID) effects on 90-nm technology Silicon Storage

Flash memories are critical for embedded devices to operate properly but are susceptible to radiation effects, which make flash memory a key factor to improve the reliability of circuitry. This thesis describes the simulation techniques used to analyze and predict total ionizing dose (TID) effects on 90-nm technology Silicon Storage Technology (SST) SuperFlash Generation 3 devices. Silvaco Atlas is used for both device level design and simulation purposes.

The simulations consist of no radiation and radiation modeling. The no radiation modeling details the cell structure development and characterizes basic operations (read, erase and program) of a flash memory cell. The program time is observed to be approximately 10 μs while the erase time is approximately 0.1 ms.

The radiation modeling uses the fixed oxide charge method to analyze the TID effects on the same flash memory cell. After irradiation, a threshold voltage shift of the flash memory cell is observed. The threshold voltages of a programmed cell and an erased cell are reduced at an average rate of 0.025 V/krad.

The use of simulation techniques allows designers to better understand the TID response of a SST flash memory cell and to predict cell level TID effects without performing the costly in-situ irradiation experiments. The simulation and experimental results agree qualitatively. In particular, simulation results reveal that ‘0’ to ‘1’ errors but not ‘1’ to ‘0’ retention errors occur; likewise, ‘0’ to ‘1’ errors dominate experimental testing, which also includes circuitry effects that can cause ‘1’ to ‘0’ failures. Both simulation and experimental results reveal flash memory cell TID resilience to about 200 krad.
ContributorsChen, Yitao (Author) / Holbert, Keith E. (Thesis advisor) / Clark, Lawrence T. (Committee member) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2016