Matching Items (6)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
156971-Thumbnail Image.png
Description
Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present memory-augmented neural networks that synthesize robot navigation policies which a) encode long-term temporal dependencies b) make decisions in

partially observed environments and c) quantify the uncertainty inherent in the task.

We extract information about the temporal structure of a task via imitation learning

from human demonstration and evaluate the performance of the models on control

policies for a robot navigation task. Experiments are performed in partially observed

environments in both simulation and the real world
ContributorsSrivatsav, Nambi (Author) / Ben Amor, Hani (Thesis advisor) / Srivastava, Siddharth (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
158693-Thumbnail Image.png
Description
This Master’s thesis includes the design, integration on-chip, and evaluation of a set of imitation learning (IL)-based scheduling policies: deep neural network (DNN)and decision tree (DT). We first developed IL-based scheduling policies for heterogeneous systems-on-chips (SoCs). Then, we tested these policies using a system-level domain-specific system-on-chip simulation framework [11]. Finally,

This Master’s thesis includes the design, integration on-chip, and evaluation of a set of imitation learning (IL)-based scheduling policies: deep neural network (DNN)and decision tree (DT). We first developed IL-based scheduling policies for heterogeneous systems-on-chips (SoCs). Then, we tested these policies using a system-level domain-specific system-on-chip simulation framework [11]. Finally, we transformed them into efficient code using a cloud engine [1] and implemented on a user-space emulation framework [61] on a Unix-based SoC. IL is one area of machine learning (ML) and a useful method to train artificial intelligence (AI) models by imitating the decisions of an expert or Oracle that knows the optimal solution. This thesis's primary focus is to adapt an ML model to work on-chip and optimize the resource allocation for a set of domain-specific wireless and radar systems applications. Evaluation results with four streaming applications from wireless communications and radar domains show how the proposed IL-based scheduler approximates an offline Oracle expert with more than 97% accuracy and 1.20× faster execution time. The models have been implemented as an add-on, making it easy to port to other SoCs.
ContributorsHolt, Conrad Mestres (Author) / Ogras, Umit Y. (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Akoglu, Ali (Committee member) / Arizona State University (Publisher)
Created2020
161716-Thumbnail Image.png
Description
Multi-robot systems show great promise in performing complex tasks in areas ranging from search and rescue to interplanetary exploration. Yet controlling and coordinating the behaviors of these robots effectively is an open research problem. This research investigates techniques to control a multi-drone system where the drones learn to act in

Multi-robot systems show great promise in performing complex tasks in areas ranging from search and rescue to interplanetary exploration. Yet controlling and coordinating the behaviors of these robots effectively is an open research problem. This research investigates techniques to control a multi-drone system where the drones learn to act in a physics-based simulator using demonstrations from artificially generated motion data that simulate flocking behavior in biological swarms. Using these demonstrations enables faster training than approaches where the agents start learning from scratch. The Graph Neural Network (GNN) controller used for the drones learns an efficient representation of low-level interactions in the system, allowing the proposed method to scale to more agents than in training data. This work also discusses techniques to improve performance in the face of real-world challenges such as sensor noise.
ContributorsKhopkar, Parth (Author) / Ben Amor, Heni H (Thesis advisor) / Pavlic, Theodore T (Committee member) / Zhou, Siyu S (Committee member) / Arizona State University (Publisher)
Created2021