Matching Items (4)
Filtering by

Clear all filters

156050-Thumbnail Image.png
Description
Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol

Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol separation abilities. In this dissertation, we present

fundamental studies on the synthesis of ZIF-71/PDMS MMMs.

Free-standing ZIF-71/ PDMS membranes with 0, 5, 25 and 40 wt % ZIF-71

loadings were prepared and the pervaporation separation for ethanol and 1-butanol from

water was measured. ZIF-71/PDMS MMMs were formed through addition cure and

condensation cure methods. Addition cure method was not compatible with ZIF-71

resulting in membranes with poor mechanical properties, while the condensation cure

method resulted in membranes with good mechanical properties. The 40 wt % ZIF-71

loading PDMS nanocomposite membranes achieved a maximum ethanol/water selectivity

of 0.81 ± 0.04 selectivity and maximum 1-butnaol/water selectivity of 5.64 ± 0.15.

The effects of synthesis time, temperature, and reactant ratio on ZIF-71 particle

size and the effect of particle size on membrane performance were studied. Temperature

had the greatest effect on ZIF-71 particle size as the synthesis temperature varied from -

20 to 35 ºC. The ZIF-71 synthesized had particle diameters ranging from 150 nm to 1

μm. ZIF-71 particle size is critical in ZIF-71/PDMS composite membrane performance

for alcohol removal from water through pervaporation. The membranes made with

micron sized ZIF-71 particles showed higher alcohol/water selectivity than those with

smaller particles. Both alcohol and water permeability increased when larger sized ZIF-

71 particles were incorporated.

ZIF-71 particles were modified with four ligands through solvent assisted linker

exchange (SALE) method: benzimidazole (BIM), 5-methylbenzimidazole (MBIM), 5,6-

dimethylbenzimidazole (DMBIM) and 4-Phenylimidazole (PI). The morphology of ZIF-

71 were maintained after the modification. ZIF-71/PDMS composite membranes with 25

wt% loading modified ZIF-71 particles were made for alcohol/water separation. Better

particle dispersion in PDMS polymer matrix was observed with the ligand modified ZIFs.

For both ethanol/water and 1-butanol/water separations, the alcohol permeability and

alcohol/water selectivity were lowered after the ZIF-71 ligand exchange reaction.
ContributorsYin, Huidan (Author) / Lind, Mary Laura (Thesis advisor) / Mu, Bin (Committee member) / Nielsen, David (Committee member) / Seo, Don (Committee member) / Lin, Jerry (Committee member) / Arizona State University (Publisher)
Created2017
157332-Thumbnail Image.png
Description
In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to

In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to increase quantum efficiency of crystalline silicon solar cells in the UV regions. This new approach is expected to boost the initial power output of the modules and reduce the long-term encapsulant browning issues. However, this new approach could lead to other durability and reliability issues such as delamination of encapsulant by damaging interfacial bonds, destruction of antireflection coating on solar cells and even breakage of polymeric backbone of EVA. This work compares the durability and reliability issues of PV modules having glass without cerium oxide and EVA with (aka, UVcut or UVC) and without (aka, UVpass or UVP) UV absorbing additives. In addition, modules with UVP front and UVC back EVA have also been investigated (aka, UVhybrid or UVH). The mini-modules with nine split cells used in this work were fabricated at ASU’s Photovoltaic Reliability Laboratory. The durability and reliability caused by three stress variables have been investigated and the three variables are temperature, humidity/oxygen and UV dosage. The influence of up to 800 kWh/m2 UV dosage has been investigated at various dosage levels. Many material and device characterizations have been performed to ascertain the degradation modes and effects. The UVC modules showed encapsulant discoloration at the cell centers as expected but the UVH modules showed a ring-shaped encapsulant discoloration close to the cell edges as evidenced in the UV fluorescence (UVF) imaging study. The PV modules containing UVP on both sides of cells with limited access to humidity or oxygen through backsheet (covered backsheet with adhesive aluminum tape) seem to experience encapsulant delamination as evidenced in the UVF images. Plausible explanations for these observations have been presented.
ContributorsArularasu, Pooja (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Mu, Bin (Thesis advisor) / Varman, Arul M (Committee member) / Arizona State University (Publisher)
Created2019
154799-Thumbnail Image.png
Description
While the solution diffusion model and pore flow model dominate pervaporation transport mechanism modeling, a new model combining the solution diffusion and viscous flow models is validated using membranes with large scale defects exceeding 2 nm in diameter. A range of membranes was characterized using scanning electron microscopy and

While the solution diffusion model and pore flow model dominate pervaporation transport mechanism modeling, a new model combining the solution diffusion and viscous flow models is validated using membranes with large scale defects exceeding 2 nm in diameter. A range of membranes was characterized using scanning electron microscopy and x-ray diffraction (XRD) to determine quality and phase characteristics. MFI zeolite membranes of He/SF6 pure gas permeation ideal selectivities of 25, 15, and 3 for good, medium, and poor quality membranes were subjected to liquid pervaporations with a 5% ethanol in water feed, by weight. Feed pressure was increased from 1 to 5 atm, to validate existence of viscous flow in the defects. Component molar flux is modeled using the solution diffusion model and the viscous flow model, via J_i=F_i (γ_i x_i P_i^sat )+(ρ )/M_W ∅/μ_ij x_i P_h. A negative coefficient of thermal expansion is observed as permeances drop as a function of temperature in all three membranes, where ϕ=((ϵr_p^2)/τ∆x). Experimental parameter ϕ increased as a function of temperature, and increased with decreasing membrane quality. This further proves that zeolitic pores are shrinking in one direction, and pulling intercrystalline voids larger, increasing the (ϵ/τ) ratio. Permiabilities of the bad, medium, and good quality membrane also decreased over time for both ethanol and water, meaning that fundamental membrane characteristics changed as a function of temperature. To conclude, the model reasonably fits empirical data reasonably well.
ContributorsWilliams, Suzanne Jean (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2016
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017