Matching Items (2)
Filtering by

Clear all filters

150993-Thumbnail Image.png
Description
Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit

Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit unique properties such as increased chemical reactivity due to high specific surface area to volume ratios. Bacteria play a major role in many natural and engineered biogeochemical reactions in wastewater treatment plants and other environmental compartments. I have evaluated the laboratory isolates of E. coli, Bacillus, Alcaligenes, Pseudomonas; wastewater isolates of E. coli and Bacillus; and pathogenic isolate of E. coli for their response to 50 & 100 nm sized Cu nanoparticles (CuNPs). Bactericidal tests, scanning electron microscopy (SEM) analyses, and probable toxicity pathways assays were performed. The results indicate that under continuous mixing conditions, CuNPs are effective in inactivation of the selected bacterial isolates. In general, exposure to CuNPs resulted in 4 to >6 log reduction in bacterial population within 2 hours. Based on the GR, LDH and MTT assays, bacterial cells showed different toxicity elicitation pathways after exposure to CuNPs. Therefore, it can be concluded that the laboratory isolates are good candidates for predicting the behavior of environmental isolates exposed to CuNPs. Also, high inactivation values recorded in this study suggest that the presence of CuNPs in different environmental compartments may have an impact on pollutants attenuation and wastewater biological treatment processes. These results point towards the need for an in depth investigation of the impact of NPs on the biological processes; and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.
ContributorsAlboloushi, Ali (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2012
154919-Thumbnail Image.png
Description
Amazonia, inhabited and investigated for millennia, continues to astonish scientists with its cultural and natural diversity. Although Amazonia is rapidly changing, its vast and varied landscape still contains a complex natural pharmacopeia. The Amazonian tribes have accrued valuable environmental and geological knowledge that can be studied. This dissertation demonstrates that

Amazonia, inhabited and investigated for millennia, continues to astonish scientists with its cultural and natural diversity. Although Amazonia is rapidly changing, its vast and varied landscape still contains a complex natural pharmacopeia. The Amazonian tribes have accrued valuable environmental and geological knowledge that can be studied. This dissertation demonstrates that Indigenous Knowledge considered alongside Western Science can enhance our understanding of the relationship of people to geological materials and hydrological resources, and reveal mineral medicines with practical applications.

I used methods from anthropology and geology to explore the geological knowledge of the Uitoto, a tribe of the Colombian Amazon. The Uitoto use two metaphors to describe Earth systems: 1. the earth is a body, and 2. the Amazon is a tree. I found that they classify surface-water systems according to observable characteristics and use mineral clays to treat various maladies. I argue that Uitoto knowledge about Amazonian mineral resources and surface water is practical, empirically–based and, in many cases, more nuanced than mainstream scientific knowledge.

I studied the mode of action of a natural antibacterial clay from the Colombian Amazon (AMZ) to discover whether the Uitoto’s claims about the clay’s medicinal values was verifiable using the methods of Western Science. Natural antibacterial clays can inhibit the growth of human pathogens. Methods from microbiology and geochemistry were combined to evaluate the mineral-microbe interactions that inhibit growth of model Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The AMZ antibacterial clay contains 45 % kaolinites and 30 % smectites. Its high surface area maintains an acidic environment (pH 4.5) and releases high concentrations of aluminum. Aluminum accumulates in the outer membrane of E. coli by binding to phospholipids. Furthermore, the membrane’s permeability increases due to synergistic effects between aluminum and transition metals released from the AMZ (i.e. Fe, Cu). The changes in the membrane may compromise its function as a barrier. Understanding the antibacterial mechanism of AMZ is key for its safe use as a natural product. These findings can help us harness the capabilities of antibacterial clays more efficiently.

Lastly, I integrated the results of this work in place-based, cross-cultural educational materials tailored for the tribal schools in the Colombian Amazon. The design of the units was informed by principles of curriculum design and successful pedagogic approaches for Native American students. The purpose of these educational materials is to return the results of research, enhance learning and participation of indigenous peoples in geosciences, and respond to the multicultural and plurilingual educational needs in countries such as Colombia.
ContributorsLondoño Arias, Sandra Carolina (Author) / Williams, Lynda B (Thesis advisor) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth A. (Committee member) / Hartnett, Hilairy H (Committee member) / Raymond, Jason (Committee member) / Arizona State University (Publisher)
Created2016