Matching Items (2)
150908-Thumbnail Image.png
Description
In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive

In geographical locations with hot-arid climates, sun control in buildings is one primary problem to solve for the building envelope design. Today's technological advances in building science bring with them the opportunity to design dynamic façade systems for sun radiation control and daylighting. Although dynamic systems can become an attractive visual element, they can be costly and challenging to maintain for building owners. Alternatively, fixed solar-shading systems can be designed to create dynamism in the façade of the building, while providing similar functionalities for sun control. The work presented in this project focuses on the use of a visual scripting editor for modeling software, Grasshopper, to develop a Solar Control Visual Script that evaluates building envelope surfaces with planar and non-uniform rational basis-spline (NURBS) forms and provides projections for fixed sun control systems. The design platform of Grasshopper allows individuals with no experience or prior computer coding education to build up programming-like capabilities; this feature permits users to discover new design possibilities within flexible frames that can contribute to the overall design being pursued, while also having an environmental response. The Solar Control Visual Script provides minimum sizing geometries that achieve shading in openings at a particular date and time of the year. The model for this method of analysis makes use of three components to derive the appropriate values for the projections of shading geometries: typical meteorological year (TMY) data, irradiation isotropic equations and shading profile angles equations for vertical and tilted surfaces. Providing an automatic visual of generated geometries uncovers the opportunity to test several model forms and reiterates the analysis when modifying control parameters. By employing building science as a set of environmental parameters, the design outcome bears a dynamic form that responds to natural force conditions. The optimized results promote an efficient environmental design solution for sun control as an integral alternative into the building envelope.
ContributorsGrijalva, Karla (Author) / Bryan, Harvey J. (Thesis advisor) / Griffiths, Jason (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2012
152365-Thumbnail Image.png
Description
For most of our history humans have been closely tied to energy provided by the sun. Phases of light and dark initiate major biological functions within each day and regulate patterns of sleep and heightened alertness. Daylight was historically synonymous with sophisticated architecture, providing a mysterious play of light and

For most of our history humans have been closely tied to energy provided by the sun. Phases of light and dark initiate major biological functions within each day and regulate patterns of sleep and heightened alertness. Daylight was historically synonymous with sophisticated architecture, providing a mysterious play of light and illuminating productive tasks. It is only within the last 150 years that humans have sought to improve upon daylight, largely replacing it with artificially fueled systems. A new scientific approach to providing interior light has focused on the visible spectrum, negating the remainder of energy from our lives. This thesis considers the full spectrum of natural daylight, and its potential for improving human health, and well being. The literature review explores a brief history of solar architecture leading into the 21st century. A case study of the award winning Arabian Library in Scottsdale Arizona reveals four methods of passive daylight integration. A phenomenological ethnographic methodology assessed the impact of these four strategies on interior lighting quality, documented from the designer's perspective. As the science of photobiology continues to advance, it has become clearly evident that natural daylight provides more than mere illumination, and should be considered an essential element of the interior built environment.
ContributorsMarotta, Nickolas A (Author) / Bernardi, Jose (Thesis advisor) / Rowen, Marthe (Committee member) / Bauer, Kelly (Committee member) / Arizona State University (Publisher)
Created2013