Matching Items (10)
Filtering by

Clear all filters

151276-Thumbnail Image.png
Description
This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. The angular position dependency of the rotor shaft is retained in the inductance matrix associated with the model to accurately capture the dynamics of the motor loads. The equivalent circuit of the new model is interfaced with the electric network in the EMTP. The dynamic response of the motor when subjected to faults at different points on voltage waveform has been studied using the EMTP simulator. The mechanism and the impacts of motor stalling need to be explored with multiple units of the detailed model connected to a realistic three-phase distribution system. The model developed can be utilized to assess and improve the product design of compressor motors by air-conditioner manufacturers. Another critical application of the model would be to examine the impacts of asymmetric transmission faults on distribution systems to investigate and develop mitigation measures for the FIDVR problem.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
150856-Thumbnail Image.png
Description
Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is far from an accurate representation of single-phase induction motors. In this work a simulation method is proposed to study the precise influence of single-phase motor load in context of FIDVR. The load, as seen the transmission bus, is replaced with a detailed distribution system. Each single-phase motor in the distribution system is represented by an equipment-level model for best accuracy. This is to enable the simulation to capture stalling effects of air conditioner compressor motors as they are related to FIDVR events. The single phase motor models are compared against the traditional three phase aggregate approximation. Also different percentages of single-phase motor load are compared and analyzed. Simulation result shows that proposed method is able to reproduce FIDVR events. This method also provides a reasonable estimation of the power system voltage stability under the contingencies.
ContributorsMa, Yan (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151242-Thumbnail Image.png
Description
Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The

Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The study in this dissertation focuses on the influence of PV generation on trans-mission system reliability. This is a concern because PV generation output is integrated into present power systems at various voltage levels and may significantly affect the power flow patterns. This dissertation applies a probabilistic power flow (PPF) algorithm to evaluate the influence of PV generation uncertainty on transmission system perfor-mance. A cumulant-based PPF algorithm suitable for large systems is used. Correlation among adjacent PV resources is considered. Three types of approximation expansions based on cumulants namely Gram-Charlier expansion, Edgeworth expansion and Cor-nish-Fisher expansion are compared, and their properties, advantages and deficiencies are discussed. Additionally, a novel probabilistic model of PV generation is developed to obtain the probability density function (PDF) of the PV generation production based on environmental conditions. Besides, this dissertation proposes a novel PPF algorithm considering the conven-tional generation dispatching operation to balance PV generation uncertainties. It is pru-dent to include generation dispatch in the PPF algorithm since the dispatching strategy compensates for PV generation injections and influences the uncertainty results. Fur-thermore, this dissertation also proposes a probabilistic optimal power dispatching strat-egy which considers uncertainty problems in the economic dispatch and optimizes the expected value of the total cost with the overload probability as a constraint. The proposed PPF algorithm with the three expansions is compared with Monte Carlo simulations (MCS) with results for a 2497-bus representation of the Arizona area of the Western Electricity Coordinating Council (WECC) system. The PDFs of the bus voltages, line flows and slack bus production are computed, and are used to identify the confidence interval, the over limit probability and the expected over limit time of the ob-jective variables. The proposed algorithm is of significant relevance to the operating and planning studies of the transmission systems with PV generation installed.
ContributorsFan, Miao (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald Thomas (Committee member) / Ayyanar, Raja (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
156196-Thumbnail Image.png
Description
The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models

The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost.

Contemporary market models do not satisfy the minimum stipulated N-1 mandate for generator contingencies adequately. This research enhances the traditional market practices to handle generator contingencies more appropriately. In addition, this research employs stochastic optimization that leverages statistical information of an ensemble of uncertain scenarios and data analytics-based algorithms to design and develop cohesive reserve policies. The proposed approaches modify the classical SCUC problem to include reserve policies that aim to preemptively anticipate post-contingency congestion patterns and account for resource uncertainty, simultaneously. The hypothesis is to integrate data-mining, reserve requirement determination, and stochastic optimization in a holistic manner without compromising on efficiency, performance, and scalability. The enhanced reserve procurement policies use contingency-based response sets and post-contingency transmission constraints to appropriately predict the influence of recourse actions, i.e., nodal reserve deployment, on critical transmission elements.

This research improves the conventional deterministic models, including reserve scheduling decisions, and facilitates the transition to stochastic models by addressing the reserve allocation issue. The performance of the enhanced SCUC model is compared against con-temporary deterministic models and a stochastic unit commitment model. Numerical results are based on the IEEE 118-bus and the 2383-bus Polish test systems. Test results illustrate that the proposed reserve models consistently outperform the benchmark reserve policies by improving the market efficiency and enhancing the reliability of the market solution at reduced costs while maintaining scalability and market transparency. The proposed approaches require fewer ISO discretionary adjustments and can be employed by present-day solvers with minimal disruption to existing market procedures.
ContributorsSinghal, Nikita Ghanshyam (Author) / Hedman, Kory W (Thesis advisor) / Vittal, Vijay (Committee member) / Sankar, Lalitha (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2018
153603-Thumbnail Image.png
Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods.

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.

This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
ContributorsKorad, Akshay Shashikumar (Author) / Hedman, Kory W (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2015
154530-Thumbnail Image.png
Description
The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC

The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally light methods to harness the flexibility of the grid to derive maximum benefits to the system in terms of reliability. One of the goals of this research is to develop a tool that will be capable of providing TC actions in a minimal time-frame, which can be readily adopted by the industry for real-time corrective applications.

A DC based heuristic, i.e., a greedy algorithm, is developed and applied to improve the computational time for the TC problem while still maintaining the ability to find quality solutions. In the greedy algorithm, an expression is derived, which indicates the impact on the objective for a marginal change in the state of a transmission line. This expression is used to generate a priority list with potential candidate lines for switching, which may provide huge improvements to the system. The advantage of this method is that it is a fast heuristic as compared to using mixed integer programming (MIP) approach.

Alternatively, AC based heuristics are developed for TC problem and tested on actual data from PJM, ERCOT and TVA. AC based N-1 contingency analysis is performed to identify the contingencies that cause network violations. Simple proximity based heuristics are developed and the fast decoupled power flow is solved iteratively to identify the top five TC actions, which provide reduction in violations. Time domain simulations are performed to ensure that the TC actions do not cause system instability. Simulation results show significant reductions in violations in the system by the application of the TC heuristics.
ContributorsBalasubramanian, Pranavamoorthy (Author) / Hedman, Kory W (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2016
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
155042-Thumbnail Image.png
Description
The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models

The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models and efficient techniques for analyzing power system operability. The work done in this report focusses on two such topics

1. Analysis of load model parameter uncertainty and sensitivity based pa-rameter estimation for power system studies

2. A systematic approach to n-1-1 analysis for power system security as-sessment

To assess the effect of load model parameter uncertainty, a trajectory sensitivity based approach is proposed in this work. Trajectory sensitivity analysis provides a sys-tematic approach to study the impact of parameter uncertainty on power system re-sponse to disturbances. Furthermore, the non-smooth nature of the composite load model presents some additional challenges to sensitivity analysis in a realistic power system. Accordingly, the impact of the non-smooth nature of load models on the sensitivity analysis is addressed in this work. The study was performed using the Western Electrici-ty Coordinating Council (WECC) system model. To address the issue of load model pa-rameter estimation, a sensitivity based load model parameter estimation technique is presented in this work. A detailed discussion on utilizing sensitivities to improve the ac-curacy and efficiency of the parameter estimation process is also presented in this work.

Cascading outages can have a catastrophic impact on power systems. As such, the NERC transmission planning (TPL) standards requires utilities to plan for n¬-1-1 out-ages. However, such analyses can be computationally burdensome for any realistic pow-er system owing to the staggering number of possible n-1-1 contingencies. To address this problem, the report proposes a systematic approach to analyze n-1-1 contingencies in a computationally tractable manner for power system security assessment. The pro-posed approach addresses both static and dynamic security assessment. The proposed methods have been tested on the WECC system.
ContributorsMitra, Parag (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
171852-Thumbnail Image.png
Description
The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with a significant increase of DERs. This decentralized network requires a

The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with a significant increase of DERs. This decentralized network requires a paradigm change in modeling distribution systems in more detail to maintain the reliability and efficiency while accommodating a high level of DERs. Accurate models of distribution feeders, including the secondary network, loads, and DER components must be developed and validated for system planning and operation and to examine the distribution system performance. In this work, a detailed model of an actual feeder with high penetration of DERs from an electrical utility in Arizona is developed. For the primary circuit, distribution transformers, and cables are modeled. For the secondary circuit, actual conductors to each house, as well as loads and photovoltaic (PV) units at each premise are represented. An automated tool for secondary network topology construction for load feeder topology assignation is developed. The automated tool provides a more accurate feeder topology for power flow calculation purposes. The input data for this tool consists of parcel geographic information system (GIS) delimitation data, and utility secondary feeder topology database. Additionally, a highly automated, novel method to enhance the accuracy of utility distribution feeder models to capture their performance by matching simulation results with corresponding field measurements is presented. The method proposed uses advanced metering infrastructure (AMI) voltage and derived active power measurements at the customer level, data acquisition systems (DAS) measurements at the feeder-head, in conjunction with an AC optimal power flow (ACOPF) to estimate customer active and reactive power consumption over a time horizon, while accounting for unmetered loads. The method proposed estimates both voltage magnitude and angle for each phase at the unbalanced distribution substation. The accuracy of the method developed by comparing the time-series power flow results obtained from the enhancement algorithm with OpenDSS results and with the field measurements available. The proposed approach seamlessly manages the data available from the optimization procedure through the final model verification.
ContributorsMontano-Martinez, Karen Vanessa (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Weng, Yang (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2022
161588-Thumbnail Image.png
Description
Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional methods of steady-state security assessment in power systems involve contingency analysis based on AC or DC power flows. However, power flow based contingency analysis is not

Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional methods of steady-state security assessment in power systems involve contingency analysis based on AC or DC power flows. However, power flow based contingency analysis is not fast enough to evaluate all contingencies for real-time operations. Therefore, real-time contingency analysis (RTCA) only evaluates a subset of the contingencies (called the contingency list), and hence might miss critical contingencies that lead to cascading failures.This dissertation proposes a new graph-theoretic approach, called the feasibility test (FT) algorithm, for analyzing whether a contingency will create a saturated or over-loaded cut-set in a meshed power network; a cut-set denotes a set of lines which if tripped separates the network into two disjoint islands. A novel feature of the proposed approach is that it lowers the solution time significantly making the approach viable for an exhaustive real-time evaluation of the system. Detecting saturated cut-sets in the power system is important because they represent the vulnerable bottlenecks in the network. The robustness of the FT algorithm is demonstrated on a 17,000+ bus model of the Western Interconnection (WI). Following the detection of post-contingency cut-set saturation, a two-component methodology is proposed to enhance the reliability of large power systems during a series of outages. The first component combines the proposed FT algorithm with RTCA to create an integrated corrective action (iCA), whose goal is to secure the power system against post-contingency cut-set saturation as well as critical branch overloads. The second component only employs the results of the FT to create a relaxed corrective action (rCA) that quickly secures the system against saturated cut-sets. The first component is more comprehensive than the second, but the latter is computationally more efficient. The effectiveness of the two components is evaluated based upon the number of cascade triggering contingencies alleviated, and the computation time. Analysis of different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas systems indicate that the proposed two-component methodology enhances the scope and speed of power system security assessment during multiple outages.
ContributorsSen Biswas, Reetam (Author) / Pal, Anamitra (Thesis advisor) / Vittal, Vijay (Committee member) / Undrill, John (Committee member) / Wu, Meng (Committee member) / Zhang, Yingchen (Committee member) / Arizona State University (Publisher)
Created2021