Matching Items (8)

150520-Thumbnail Image.png

A power system reliability evaluation technique and education tool for wind energy integration

Description

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation and load data of the Texas power system in 2008 are used to construct a test case. To demonstrate the robustness of the method, relia-bility studies have been conducted for a fairly constant as well as for a largely varying wind generation profile. Further, the case of increased wind generation penetration level has been simulated and comments made about the usability of the proposed method to aid in power system planning in scenarios of future expansion of wind energy infrastructure. The second part of this thesis explains the development of a graphic user interface (GUI) to demonstrate the operation of a grid connected doubly fed induction generator (DFIG). The theory of DFIG and its back-to-back power converter is described. The GUI illustrates the power flow, behavior of the electrical circuit and the maximum power point tracking of the machine for a variable wind speed input provided by the user. The tool, although developed on MATLAB software platform, has been constructed to work as a standalone application on Windows operating system based computer and enables even the non-engineering students to access it. Results of both the segments of the thesis are discussed. Remarks are presented about the validity of the reliability technique and GUI interface for variable wind speed conditions. Improvements have been suggested to enable the use of the reliability technique for a more elaborate system. Recommendations have been made about expanding the features of the GUI tool and to use it to promote educational interest about renewable power engineering.

Contributors

Agent

Created

Date Created
  • 2012

Effect of various holomorphic embeddings on convergence rate and condition number as applied to the power flow problem

Description

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded.

This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution.

By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail.

With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER.

Contributors

Agent

Created

Date Created
  • 2015

151224-Thumbnail Image.png

Power system network reduction for engineering and economic analysis

Description

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources.

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future power grid. The requirements of a network equivalent to be used in such planning tools are very different from those assumed in the development of traditional equivalencing procedures. This dissertation is focused on the development, implementation and verification of two network equivalencing approaches on large power systems, such as the Eastern Interconnection. Traditional Ward-type equivalences are a class of equivalencing approaches but this class has some significant drawbacks. It is well known that Ward-type equivalents "smear" the injections of external generators over a large number of boundary buses. For newer long-term investment applications that take into account such things as greenhouse gas (GHG) regulations and generator availability, it is computationally impractical to model fractions of generators located at many buses. A modified-Ward equivalent is proposed to address this limitation such that the external generators are moved wholesale to some internal buses based on electrical distance. This proposed equivalencing procedure is designed so that the retained-line power flows in the equivalent match those in the unreduced (full) model exactly. During the reduction process, accommodations for special system elements are addressed, including static VAr compensators (SVCs), high voltage dc (HVDC) transmission lines, and phase angle regulators. Another network equivalencing approach based on the dc power flow assumptions and the power transfer distribution factors (PTDFs) is proposed. This method, rather than eliminate buses via Gauss-reduction, aggregates buses on a zonal basis. The bus aggregation approach proposed here is superior to the existing bus aggregation methods in that a) under the base case, the equivalent-system inter-zonal power flows exactly match those calculated using the full-network-model b) as the operating conditions change, errors in line flows are reduced using the proposed bus clustering algorithm c) this method is computationally more efficient than other bus aggregation methods proposed heretofore. A critical step in achieving accuracy with a bus aggregation approach is selecting which buses to cluster together and how many clusters are needed. Clustering in this context refers to the process of partitioning a network into subsets of buses. An efficient network clustering method is proposed based on the PTDFs and the data mining techniques. This method is applied to the EI topology using the "Saguaro" supercomputer at ASU, a resource with sufficient memory and computational capability for handling this 60,000-bus and 80,000-branch system. The network equivalents generated by the proposed approaches are verified and tested for different operating conditions and promising results have been observed.

Contributors

Agent

Created

Date Created
  • 2012

152934-Thumbnail Image.png

Optimal utilization of distributed resources with an iterative transmission and distribution framework

Description

This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation

This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It is further used to develop an accurate pricing mechanism (Distribution-based Location Marginal Pricing), which is reflective of the moment-to-moment costs of generating and delivering electrical energy, for the distribution system. By accurately modeling the two sub-systems, we can improve the economic efficiency and the system reliability, as the price sensitive resources can be controlled to behave in a way that benefits the power system as a whole.

Contributors

Agent

Created

Date Created
  • 2014

152865-Thumbnail Image.png

An investment planning model for a battery energy storage system: considering battery degradation effects

Description

As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy

As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while the electric power system faces new challenges from rapid growing percentage of wind and solar. Unlike combustion generators, intermittency and uncertainty are the inherent features of wind and solar. These features bring a big challenge to the stability of modern electric power grid, especially for a small scale power grid with wind and solar. In order to deal with the intermittency and uncertainty of wind and solar, energy storage systems are considered as one solution to mitigate the fluctuation of wind and solar by smoothing their power outputs. For many different types of energy storage systems, this thesis studied the operation of battery energy storage systems (BESS) in power systems and analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization patterns for BESS and calculating the benefits, this thesis found the BESS utilization patterns and benefits through an investment planning model. Furthermore, a cost is given for utilizing BESS and to find the best way of operating BESS rather than set an upper bound and a lower bound for BESS energy levels. Two planning models are proposed in this thesis and preliminary conclusions are derived from simulation results. This work is organized as below: chapter 1 briefly introduces the background of this research; chapter 2 gives an overview of previous related work in this area; the main work of this thesis is put in chapter 3 and chapter 4 contains the generic BESS model and the investment planning model; the following chapter 5 includes the simulation and results analysis of this research and chapter 6 provides the conclusions from chapter 5.

Contributors

Agent

Created

Date Created
  • 2014

150747-Thumbnail Image.png

Design and development of a novel fast pilot protection system for future renewable electric energy distribution management project

Description

In the future electrical distribution system, it can be predicted that local power generators such as photovoltaic panels or wind turbines will play an important role in local distribution network.

In the future electrical distribution system, it can be predicted that local power generators such as photovoltaic panels or wind turbines will play an important role in local distribution network. The local energy generation and local energy storage device can cause indeterminable power flow, and this could cause severe protection problems to existing simple overcurrent coordinated distribution protection system. An accurate, fast and reliable protection system based on pilot protection concept is proposed in this thesis. A comprehensive protection design specialized for the FREEDM system - the intelligent fault management (IFM) is presented in detail. In IFM, the pilot-differential protective method is employed as primary protection while the overcurrent protective method is employed as a backup protection. The IFM has been implemented by a real time monitoring program on LabVIEW. A complete sensitivity and selectivity analysis based on simulation is performed to evaluate the protection program performance under various system operating conditions. Followed by the sensitivity analysis, a case study of multiple-terminal model is presented with the possible challenges and potential limitation of the proposed protection system. Furthermore, a micro controller based on a protection system as hardware implementation is studied on a scaled physical test bed. The communication block and signal processing block are accomplished to establish cooperation between the micro-controller hardware and the IFM program. Various fault cases are tested. The result obtained shows that the proposed protection system successfully identifies faults on the test bed and the response time is approximately 1 cycle which is fast compared to the existing commercial protection systems and satisfies the FREEDM system requirement. In the end, an advanced system with faster, dedicated communication media is accomplished. By verifying with the virtual FREEDM system on RTDS, the correctness and the advantages of the proposed method are verified. An ultra fast protection system response time of 4ms is achieved, which is the fastest protection system for a distribution level electrical system.

Contributors

Agent

Created

Date Created
  • 2012

150671-Thumbnail Image.png

Trajectory sensitivity based power system dynamic security assessment

Description

Contemporary methods for dynamic security assessment (DSA) mainly re-ly on time domain simulations to explore the influence of large disturbances in a power system. These methods are computationally intensive especially

Contemporary methods for dynamic security assessment (DSA) mainly re-ly on time domain simulations to explore the influence of large disturbances in a power system. These methods are computationally intensive especially when the system operating point changes continually. The trajectory sensitivity method, when implemented and utilized as a complement to the existing DSA time domain simulation routine, can provide valuable insights into the system variation in re-sponse to system parameter changes. The implementation of the trajectory sensitivity analysis is based on an open source power system analysis toolbox called PSAT. Eight categories of sen-sitivity elements have been implemented and tested. The accuracy assessment of the implementation demonstrates the validity of both the theory and the imple-mentation. The computational burden introduced by the additional sensitivity equa-tions is relieved by two innovative methods: one is by employing a cluster to per-form the sensitivity calculations in parallel; the other one is by developing a mod-ified very dishonest Newton method in conjunction with the latest sparse matrix processing technology. The relation between the linear approximation accuracy and the perturba-tion size is also studied numerically. It is found that there is a fixed connection between the linear approximation accuracy and the perturbation size. Therefore this finding can serve as a general application guide to evaluate the accuracy of the linear approximation. The applicability of the trajectory sensitivity approach to a large realistic network has been demonstrated in detail. This research work applies the trajectory sensitivity analysis method to the Western Electricity Coordinating Council (WECC) system. Several typical power system dynamic security problems, in-cluding the transient angle stability problem, the voltage stability problem consid-ering load modeling uncertainty and the transient stability constrained interface real power flow limit calculation, have been addressed. Besides, a method based on the trajectory sensitivity approach and the model predictive control has been developed for determination of under frequency load shedding strategy for real time stability assessment. These applications have shown the great efficacy and accuracy of the trajectory sensitivity method in handling these traditional power system stability problems.

Contributors

Agent

Created

Date Created
  • 2012

156471-Thumbnail Image.png

Surge Arrester Placement for Long Transmission Line and Substation

Description

Prior work in literature has illustrated the benefits of using surge arrester as a way to improve the lighting performance of the substation and transmission line. Installing surge arresters would

Prior work in literature has illustrated the benefits of using surge arrester as a way to improve the lighting performance of the substation and transmission line. Installing surge arresters would enhance the system reliability but it comes with an extra capital expenditure. This thesis provides simulation analysis to examine substation-specific applications of surge arrester as a way of determining the optimal, cost-effective placement of surge arresters. Four different surge arrester installation configurations are examined for the 500/230 kV Rudd substation which belongs to the utility, Salt River Project (SRP). The most efficient configuration is identified in this thesis. A new method “voltage-distance curve” is proposed in this work to evaluate different surge arrester installation configurations. Simulation results show that surge arresters only need to be equipped on certain location of the substation and can still ensure sufficient lightning protection.

With lower tower footing resistance, the lightning performance of the transmission line can typically be improved. However, when surge arresters are installed in the system, the footing resistance may have either negative or positive effect on the lightning performance. Different situations for both effects are studied in this thesis.

This thesis proposes a surge arrester installation strategy for the overhead transmission line lightning protection. In order to determine the most efficient surge arrester configuration of transmission line, the entire transmission line is divided into several line sections according to the footing resistance of its towers. A line section consists of the towers which have similar footing resistance. Two different designs are considered for transmission line lightning protection, they include: equip different number of surge arrester on selected phase of every tower, equip surge arresters on all phases of selected towers. By varying the number of the towers or the number of phases needs to be equipped with surge arresters, the threshold voltage for line insulator flashover is used to evaluate different surge arrester installation configurations. The way to determine the optimal surge arresters configuration for each line section is then introduced in this thesis.

Contributors

Agent

Created

Date Created
  • 2018