Matching Items (2)
Filtering by

Clear all filters

157073-Thumbnail Image.png
Description
High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has

High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has dramatically increased. For instance, Kuwait has recently announced a renewable project to be completed in 2035; this project aims to produce 15% of the countrys energy consumption from renewable sources. However, facilities that use renewable sources, such as solar and wind, to provide clean energy, are mostly placed in remote areas, as their installation requires a massive space of free land. Consequently, considerable challenges arise in terms of transmitting power generated from renewable sources of energy in remote areas to urban areas for further consumption.

The present thesis investigates different transmission line systems for transmitting bulk energy from renewable sources. Specifically, two systems will be focused on: the high-voltage alternating current (HVAC) system and the high-voltage direct current (HVDC) system. In order to determine the most efficient way of transmitting bulk energy from renewable sources, different aspects of the aforementioned two types of systems are analyzed. Limitations inherent in both HVAC and HVDC systems have been discussed.

At present, artificial intelligence plays an important role in power system control and monitoring. Consequently, in this thesis, the fault issue has been analyzed in transmission systems, with a specific consideration of machine learning tools that can help monitor transmission systems by detecting fault locations. These tools, called models, are used to analyze the collected data. In the present thesis, a focus on such models as linear regression (LR), K-nearest neighbors (KNN), linear support vector machine (LSVM) , and adaptive boost (AdaBoost). Finally, the accuracy of each model is evaluated and discussed. The machine learning concept introduced in the present thesis lays down the foundation for future research in this area so that to enable further research on the efficient ways to improve the performance of transmission line components and power systems.
ContributorsAlbannai, Bassam Ahmad (Author) / Weng, Yang (Thesis advisor) / Wu, Meng (Committee member) / Dahal, Som (Committee member) / Arizona State University (Publisher)
Created2019
190932-Thumbnail Image.png
Description
In this dissertation, a distribution system operator (DSO) framework is proposed to optimally coordinate distributed energy resources (DER) aggregators' comprehensive participation in the retail energy market as well as wholesale energy and regulation markets. Various types of DER aggregators, including energy storage aggregators (ESAGs), dispatchable distributed generation aggregators (DDGAGs), electric

In this dissertation, a distribution system operator (DSO) framework is proposed to optimally coordinate distributed energy resources (DER) aggregators' comprehensive participation in the retail energy market as well as wholesale energy and regulation markets. Various types of DER aggregators, including energy storage aggregators (ESAGs), dispatchable distributed generation aggregators (DDGAGs), electric vehicles charging stations (EVCSs), and demand response aggregators (DRAGs), are modeled in the proposed DSO framework. An important characteristic of a DSO is being capable of handling uncertainties in the system operation. An appropriate method for a market operator to cover uncertainties is using two-stage stochastic programming. To handle comprehensive retail and wholesale markets participation of distributed energy resource (DER) aggregators under uncertainty, a two-stage stochastic programming model for the DSO is proposed. To handle unbalanced distribution grids with single-phase aggregators, A DSO framework is proposed for unbalanced distribution networks based on a linearized unbalanced power flow which coordinates with wholesale market clearing process and ensures the DSO's non-profit characteristic. When proposing a DSO, coordination with the ISO is important. A framework is proposed to coordinate the operation of the independent system operator (ISO) and distribution system operator (DSO). The framework is compatible with current practice of the U.S. wholesale market to enable massive distributed energy resources (DERs) to participate in the wholesale market. The DSO builds a bid-in cost function to be submitted to the ISO market through parametric programming. A pricing problem for the DSO is proposed. In pricing problem, after ISO clears the wholesale market, the locational marginal price (LMP) of the ISO-DSO coupling substation is determined, the DSO utilizes this price to solve the DSO pricing problem. The DSO pricing problem determines the distribution LMP (D-LMP) in the distribution system and calculates the payment to each aggregator. An efficient algorithm is proposed to solve the ISO-DSO coordination parametric programming problem. Notably, our proposed algorithm significantly improves the computational efficiency of solving the parametric programming DSO problem which is computationally intensive. Various case studies are performed to analyze the market outcome of the proposed DSO framework and coordination with the ISO.
ContributorsMousavi, Mohammad (Author) / Wu, Meng (Thesis advisor) / Khorsand, Mojdeh (Committee member) / Byeon, Geunyeong (Committee member) / Nguyen, Duong (Committee member) / Arizona State University (Publisher)
Created2023