Matching Items (6)
151348-Thumbnail Image.png
Description
III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN

III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN nanorings were formed using Metal Organic Chemical Vapor Deposition through droplet epitaxy. The nanorings were thoroughly analyzed using x-ray diffraction, photoluminescence, electron microscopy, electron diffraction, and atomic force microscopy. Nanorings with high indium incorporation were achieved with indium content up to 50% that was then controlled using the growth time, temperature, In/Ga ratio and III/N ratio. The analysis showed that the nanoring shape is able to incorporate more indium than other nanostructures, due to the relaxing mechanism involved in the formation of the nanoring. The ideal conditions were determined to be growth of 30 second droplets with a growth time of 1 minute 30 seconds at 770 C to achieve the most well developed rings with the highest indium concentration.
ContributorsZaidi, Zohair (Author) / Mahajan, Subhash (Thesis advisor) / O'Connell, Michael J (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
153104-Thumbnail Image.png
Description
Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in

Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this dissertation, several issues concerning structural, electronic, and optical properties of III-nitrides have been investigated using transmission electron microscopy. First, the microstructure of InxGa1-xN (x = 0.22, 0.46, 0.60, and 0.67) films grown by metal-modulated epitaxy on GaN buffer /sapphire substrates is studied. The effect of indium composition on the structure of InGaN films and strain relaxation is carefully analyzed. High luminescence intensity, low defect density, and uniform full misfit strain relaxation are observed for x = 0.67. Second, the properties of high-indium-content InGaN thin films using a new molecular beam epitaxy method have been studied for applications in solar cell technologies. This method uses a high quality AlN buffer with large lattice mismatch that results in a critical thickness below one lattice parameter. Finally, the effect of different substrates and number of gallium sources on the microstructure of AlGaN-based deep ultraviolet laser has been studied. It is found that defects in epitaxial layer are greatly reduced when the structure is deposited on a single crystal AlN substrate. Two gallium sources in the growth of multiple quantum wells active region are found to cause a significant improvement in the quality of quantum well structures.
ContributorsWei, Yong (Author) / Ponce, Fernando (Thesis advisor) / Chizmeshya, Andrew (Committee member) / McCartney, Martha (Committee member) / Menéndez, Jose (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2014
150450-Thumbnail Image.png
Description
The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and

The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.
ContributorsMcFelea, Heather Dale (Author) / Mahajan, Subhash (Thesis advisor) / Arena, Chantal (Committee member) / Carpenter, Ray (Committee member) / Arizona State University (Publisher)
Created2011
155942-Thumbnail Image.png
Description
In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications

In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications due to broad range of bandgaps of InxGa1-xN alloys from 0.65 eV (InN) to 3.42 eV (GaN), which covers most of the electromagnetic spectrum from ultraviolet to infrared wavelengths. InGaN’s high absorption coefficient, radiation resistance and thermal stability (operating with temperature > 450 ℃) makes it a suitable PV candidate for hybrid concentrating solar thermal systems as well as other high temperature applications. This work proposed a high efficiency InGaN-based 2J tandem cell for high temperature (450 ℃) and concentration (200 X) hybrid concentrated solar thermal (CSP) application via numerical simulation. In order to address the polarization and band-offset issues for GaN/InGaN hetero-solar cells, band-engineering techniques are adopted and a simple interlayer is proposed at the hetero-interface rather than an Indium composition grading layer which is not practical in fabrication. The base absorber thickness and doping has been optimized for 1J cell performance and current matching has been achieved for 2J tandem cell design. The simulations also suggest that the issue of crystalline quality (i.e. short SRH lifetime) of the nitride material system to date is a crucial factor limiting the performance of the designed 2J cell at high temperature. Three pathways to achieve ~25% efficiency have been proposed under 450 ℃ and 200 X. An anti-reflection coating (ARC) for the InGaN solar cell optical management has been designed. Finally, effective mobility model for quantum well solar cells has been developed for efficient quasi-bulk simulation.
ContributorsFang, Yi, Ph.D (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Ponce, Fernando (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155122-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the structural and optical properties of III-V semiconductor structures for solar cell applications. By using transmission electron microscopy, many of their structural properties have been investigated, including morphology, defects, and strain relaxation. The optical properties of the semiconductor structures have been

The work contained in this dissertation is focused on the structural and optical properties of III-V semiconductor structures for solar cell applications. By using transmission electron microscopy, many of their structural properties have been investigated, including morphology, defects, and strain relaxation. The optical properties of the semiconductor structures have been studied by photoluminescence and cathodoluminescence.

Part of this work is focused on InAs quantum dots (QDs) embedded in AlGaAs matrices. This QD system is important for the realization of intermediate-band solar cells, which has three light absorption paths for high efficiency photovoltaics. The suppression of plastic strain relaxation in the QDs shows a significant improvement of the optoelectronic properties. A partial capping followed by a thermal annealing step is used to achieve spool-shaped QDs with a uniform height following the thickness of the capping layer. This step keeps the height of the QDs below a critical value that is required for plastic relaxation. The spool-shaped QDs exhibit two photoluminescence peaks that are attributed to ground and excited state transitions. The luminescence peak width is associated with the QD diameter distribution. An InAs cover layer formed during annealing is found responsible for the loss of the confinement of the excited states in smaller QDs.

The second part of this work is focused on the investigation of the InxGa1-xN thin films having different bandgaps for double-junction solar cells. InxGa1-xN films with x ≤ 0.15 were grown by metal organic chemical vapor deposition. The defects in films with different indium contents have been studied. Their effect on the optical properties of the film have been investigated by cathodoluminescence. InxGa1-xN films with indium contents higher than 20% were grown by molecular beam epitaxy. The strain relaxation in the films has been measured from electron diffraction patterns taken in cross-sectional TEM specimens. Moiré fringes in some of the films reveal interfacial strain relaxation that is explained by a critical thickness model.
ContributorsXie, Hong'en (Author) / Ponce, Fernando A. (Thesis advisor) / Crozier, Peter A. (Committee member) / Mccartney, Martha R (Committee member) / Arizona State University (Publisher)
Created2016
158089-Thumbnail Image.png
Description
Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105

Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105 cm−1, superior radiation resistance under harsh environment, and high saturation velocities and high mobility. Calculation from the detailed balance model also revealed that in multi-junction (MJ) solar cell device, materials with band gaps higher than 2.4 eV are required to achieve PV efficiencies greater than 50%, which is practically and easily feasible for InGaN materials. Other state-of-art modeling on InGaN solar cells also demonstrate great potential for applications of III-nitride solar cells in four-junction solar cell devices as well as in the integration with a non-III-nitride junction in multi-junction devices.

This dissertation first theoretically analyzed loss mechanisms and studied the theoretical limit of PV performance of InGaN solar cells with a semi-analytical model. Then three device design strategies are proposed to study and improve PV performance: band polarization engineering, structural design and band engineering. Moreover, three physical mechanisms related to high temperature performance of InGaN solar cells have been thoroughly investigated: thermal reliability issue, enhanced external quantum efficiency (EQE) and conversion efficiency with rising temperatures and carrier dynamics and localization effects inside nonpolar m-plane InGaN quantum wells (QWs) at high temperatures. In the end several future work will also be proposed.

Although still in its infancy, past and projected future progress of device design will ultimately achieve this very goal that III-nitride based solar cells will be indispensable for today and future’s society, technologies and society.
ContributorsHuang, Xuanqi (Author) / Zhao, Yuji (Thesis advisor) / Goodnick, Stephen M. (Committee member) / King, Richard R. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020