Matching Items (2)
Filtering by

Clear all filters

171610-Thumbnail Image.png
Description
As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters from 490nm − 660nm are provided. Narrow-band photometry data are

As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters from 490nm − 660nm are provided. Narrow-band photometry data are combined with broad-band photometry (SDSS/Pan-STARRS) for photometric redshift fitting. With available spectroscopic redshift data from eight of the fields, I evaluated the fitted photometric redshift results and showed that combining broad-band photometric data with narrow-band data result in improvements of factor 2-3, compared to redshift estimations from broad-band photometry alone. With 15 or 16 narrow-band data combined with SDSS (Sloan Digital Sky Survey) or Pan-STARRS1 (The Panoramic Survey Telescope and Rapid Response System) data, a Normalized Median Absolute Deviation of σNMAD ∼ 0.01−0.016 can be achieved. The multiband images of galaxy cluster ABELL 611 have been used to further study intracluster light around its brightest cluster galaxy (BCG). It can be shown here that fitting of BCG+ICL stellar properties using the averaged 1-dimensional radial profile is possible up to ∼ 100kpc within this cluster. The decreasing in age of the stellar population as a function of radius from the BCG+ICL profile, though not entirely conclusive, demonstrates possible future application of low-resolution spectrophotometry on the ICL studies. Finally, Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) mission planning study are covered, and a methodology of visualization tool for target availability is described.
ContributorsWang, Pao-Yu (Author) / Mauskopf, Philip (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2022
155091-Thumbnail Image.png
Description
The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in kilo-pixel arrays. I present a simple, robust design for a single receiver element that can be tessellated throughout a telescope's focal plane to make a ~1000 pixel array, which is much larger than the current state-of-the-art array, SuperCam, at 64 pixels and ~345 GHz.

While the original goal to develop receiver technologies has been accomplished, the path to this accomplishment required a far more holistic approach than originally anticipated. The goal of the present work has expended exponentially from that of KAPPas promised technical achievements. In the present work, KAPPa and its extension, I present solutions ranging from 1) the creation of large scale astronomical maps, 2) metaheuristic algorithms that solve tasks too complex for humans, and 3) detailed technical assembly of microscopic circuit components. Each part is equally integral for the realization of a ~1000 pixel THz arrays.

Our automated tuning algorithm, Alice, uses differential evolution techniques and has been extremely successful in its implementation. Alice provides good results for characterizing the extremely complex tuning topology of THz receivers. More importantly, it has accomplished rapid optimization of an entire array without human intervention. In the age of big data astronomy, I have prepared THz heterodyne receiver arrays by making cutting edge community-oriented data analysis tools for the future of large-scale discovery. I present a from-scratch reduction and analysis architecture developed for observations of 100s of square degree on-the-sky maps with SuperCam to address the gulf between observing with single dish antennas versus a truly integrated focal plane array.
ContributorsWheeler, Caleb Henry, III (Author) / Groppi, Christopher E (Thesis advisor) / Butler, Nathaniel (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Mauskopf, Philip (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016