Matching Items (11)
Filtering by

Clear all filters

151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152387-Thumbnail Image.png
Description
Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e.

Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e. the surface conditions that contribute to the flux measurements). Most EC studies use a small number of soil probes to estimate the land surface states underlying the measured fluxes, which likely undersamples the footprint-scale conditions, especially in semiarid shrublands which are characterized by high spatial and temporal variability. In this study, I installed a dense network of soil moisture and temperature probe profiles in the footprint region of an EC tower at two semiarid sites: a woody savanna in southern Arizona and a mixed shrubland in southern New Mexico. For data from May to September 2013, I link land surface states to EC fluxes through daily footprints estimated using an analytical model. Novel approaches are utilized to partition evapotranspiration, estimate EC footprint soil states, connect differences in fluxes to footprint composition, and assess key drivers behind soil state variability. I verify the hypothesis that a small number of soil probes poorly estimates the footprint conditions for soil moisture, due to its high spatial variability. Soil temperature, however, behaves more consistently in time and space. As such, distributed surface measurements within the EC footprint allow for stronger ties between evapotranspiration and moisture, but demonstrate no significant improvement in connecting sensible heat flux and temperature. I also find that in these systems vegetation cover appears to have stronger controls on soil moisture and temperature than does soil texture. Further, I explore the influence of footprint vegetation composition on the measured fluxes, which reveals that during the monsoon season evaporative fraction tends to increase with footprint bare soil coverage for the New Mexico site and that the ratio of daily transpiration to evapotranspiration increases with grass coverage at the Arizona site. The thesis results are useful for understanding the land-atmosphere interactions of these ecosystems and for guiding future EC studies in heterogeneous landscapes.
ContributorsAnderson, Cody Alan (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhihua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
151174-Thumbnail Image.png
Description
The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods,

The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods, and land management. I applied a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, and soils distribution. As such, it can serve to illustrate the utility of distributed models for change assessment studies. Model calibration was performed utilizing radar-based NEXRAD data, and comparisons were done to two additional sources of precipitation data: ground-based stations and the North American Land Data Assimilation System (NLDAS). Comparisons focus on the spatiotemporal distributions of precipitation and stream discharge. Utilizing the calibrated model, I applied scenarios from the HadCM3 General Circulation Model (GCM) which was dynamically downscaled by the Weather Research and Forecast (WRF) model, to refine the representation of Arizona's regional climate. Two time periods were examined, a historical 1990-2000 and a future 2031-2040, to evaluate the hydrologic consequence in the form of differences and similarities between the decadal averages for temperature, precipitation, stream discharge and evapotranspiration. Results indicate an increase in mean air temperature over the basin by 1.2 ºC. The average decadal precipitation amounts increased between the two time periods by 2.4 times that of the historical period and had an increase in variability that was 3 times the historical period. For the future period, modeled streamflow discharge in the summer increased by a factor of 3. There was no significant change in the average evapotranspiration (ET). Overall trends of increase precipitation and variability for future climate scenarios have a more significant effect on the hydrologic response than temperature increases in the system during NAM in this study basin. The results from this study suggest that water management in the Beaver Creek will need to adapt to higher summer streamflow amounts.
ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique R. (Thesis advisor) / Semken, Steven (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2012
151207-Thumbnail Image.png
Description
This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations

This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations with added uncertainties by model parameters and initial conditions. Specifically, the following science questions are addressed: (1) What is the utility of Quantitative Precipitation Estimates (QPE) for high resolution hydrologic forecasts in mountain watersheds of the CFR?, (2) How does the rainfall-reflectivity relation determine the magnitude of errors when radar observations are used for flood forecasts?, and (3) What are the spatiotemporal limits of flood forecasting in mountain basins when radar nowcasts are used into a distributed hydrological model?. The methodology consists of QPE evaluations at the site (i.e., rain gauge location), basin-average and regional scales, and Quantitative Precipitation Forecasts (QPF) assessment through regional grid-to-grid verification techniques and ensemble basin-averaged time series. The corresponding hydrologic responses that include outlet discharges, distributed runoff maps, and streamflow time series at internal channel locations, are used in light of observed and/or reference data to diagnose the suitability of fusing precipitation forecasts into a distributed model operating at multiple catchments. Results reveal that radar and multisensor QPEs lead to an improved hydrologic performance compared to simulations driven with rain gauge data only. In addition, hydrologic performances attained by satellite products preserve the fundamental properties of basin responses, including a simple scaling relation between the relative spatial variability of runoff and its magnitude. Overall, the spatial variations contained in gridded QPEs add value for warm-season flood forecasting in mountain basins, with sparse data even if those products contain some biases. These results are encouraging and open new avenues for forecasting in regions with limited access and sparse observations. Regional comparisons of different reflectivity -rainfall (Z-R) relations during three summer seasons, illustrated significant rainfall variability across the region. Consistently, hydrologic errors introduced by the distinct Z-R relations, are significant and proportional (in the log-log space) to errors in precipitation estimations and stream flow magnitude. The use of operational Z-R relations without prior calibration may lead to wrong estimation of precipitation, runoff magnitude and increased flood forecasting errors. This suggests that site-specific Z-R relations, prior to forecasting procedures, are desirable in complex terrain regions. Nowcasting experiments show the limits of flood forecasting and its dependence functions of lead time and basin scale. Across the majority of the basins, flood forecasting skill decays with lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Both precipitation and flood forecasting skills are noticeably reduced for lead times greater than 30 minutes. Scale dependence of hydrologic forecasting errors demonstrates reduced predictability at intermediate-size basins, the typical scale of convective storm systems. Overall, the fusion of high resolution radar nowcasts and the convenient parallel capabilities of the distributed hydrologic model provide an efficient framework for generating accurate real-time flood forecasts suitable for operational environments.
ContributorsMoreno Ramirez, Hernan (Author) / Vivoni, Enrique R. (Thesis advisor) / Ruddell, Benjamin L. (Committee member) / Gochis, David J. (Committee member) / Mays, Larry W. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2012
150779-Thumbnail Image.png
Description
Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence

Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence runoff by impacting the infiltration rate. However, the hydrologic patterns in these ecosystems with strong seasonality are poorly understood. In this study, we used a distributed hydrologic model evaluated against field observations to improve our understandings on spatial controls of hydrologic patterns, appropriate model resolution to simulate ponderosa pine ecosystems and hydrologic responses in the context of contrasting winter to summer transitions. Our modeling effort is focused on the hydrologic responses during the North American Monsoon (NAM), winter and spring periods. In Chapter 2, we utilized a distributed model explore the spatial controls on simulated soil moisture and temporal evolution of these spatial controls as a function of seasonal wetness. Our findings indicate that vegetation and topographic curvature are spatial controls. Vegetation controlled patterns during dry summer period switch to fine-scale terrain curvature controlled patterns during persistently wet NAM period. Thus, a climatic threshold involving rainfall and weather conditions during the NAM is identified when high rainfall amount (such as 146 mm rain in August, 1997) activates lateral flux of soil moisture and frequent cloudy cover (such as 42% cloud cover during daytime of August, 1997) lowers evapotranspiration. In Chapter 3, we investigate the impacts of model coarsening on simulated soil moisture patterns during the NAM. Results indicate that model aggregation quickly eradicates curvature features and its spatial control on hydrologic patterns. A threshold resolution of ~10% of the original terrain is identified through analyses of homogeneity indices, correlation coefficients and spatial errors beyond which the fidelity of simulated soil moisture is no longer reliable. Based on spatial error analyses, we detected that the concave areas (~28% of hillslope) are very sensitive to model coarsening and root mean square error (RMSE) is higher than residual soil moisture content (~0.07 m3/m3 soil moisture) for concave areas. Thus, concave areas need to be sampled for capturing appropriate hillslope response for this hillslope. In Chapter 4, we investigate the impacts of contrasting winter to summer transitions on hillslope hydrologic responses. We use a distributed hydrologic model to generate a consistent set of high-resolution hydrologic estimates. Our model is evaluated against the snow depth, soil moisture and runoff observations over two water years yielding reliable spatial distributions during the winter to summer transitions. We find that a wet winter followed by a dry summer promotes evapotranspiration losses (spatial averaged ~193 mm spring ET and ~ 600 mm summer ET) that dry the soil and disconnect lateral fluxes in the forested hillslope, leading to soil moisture patterns resembling vegetation patches. Conversely, a dry winter prior to a wet summer results in soil moisture increases due to high rainfall and low ET during the spring (spatially averaged 78 mm ET and 232 mm rainfall) and summer period (spatially averaged 147 mm ET and 247 mm rainfall) which promote lateral connectivity and soil moisture patterns with the signature of terrain curvature. An opposing temporal switch between infiltration and saturation excess runoff is also identified. These contrasting responses indicate that the inverse relation has significant consequences on hillslope water availability and its spatial distribution with implications on other ecohydrological processes including vegetation phenology, groundwater recharge and geomorphic development. Results from this work have implications on the design of hillslope experiments, the resolution of hillslope scale models, and the prediction of hydrologic conditions in ponderosa pine ecosystems. In addition, our findings can be used to select future hillslope sites for detailed ecohydrological investigations. Further, the proposed methodology can be useful for predicting responses to climate and land cover changes that are anticipated for the southwestern United States.
ContributorsMahmood, Taufique Hasan (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Shock, Everett (Committee member) / Heimsath, Arjun M. (Committee member) / Ruddell, Benjamin (Committee member) / Arizona State University (Publisher)
Created2012
156100-Thumbnail Image.png
Description
Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is

Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability.
ContributorsSchreiner-McGraw, Adam P (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Mascaro, Giuseppe (Committee member) / Throop, Heather L. (Committee member) / Sala, Osvaldo E. (Committee member) / Arizona State University (Publisher)
Created2017
156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
ContributorsKo, Ara (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique R. (Thesis advisor) / Myint, Soe (Committee member) / Wang, Zhihua (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2018
155737-Thumbnail Image.png
Description
Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.
ContributorsUpreti, Ruby (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique R. (Committee member) / Mascaro, Giuseppe (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2017
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015