Matching Items (3)
Filtering by

Clear all filters

150387-Thumbnail Image.png
Description
The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need

The concept of vaccination dates back further than Edward Jenner's first vaccine using cowpox pustules to confer immunity against smallpox in 1796. Nevertheless, it was Jenner's success that gave vaccines their name and made vaccinia virus (VACV) of particular interest. More than 200 years later there is still the need to understand vaccination from vaccine design to prediction of vaccine efficacy using mathematical models. Post-exposure vaccination with VACV has been suggested to be effective if administered within four days of smallpox exposure although this has not been definitively studied in humans. The first and second chapters analyze post-exposure prophylaxis of VACV in an animal model using v50ΔB13RMγ, a recombinant VACV expressing murine interferon gamma (IFN-γ) also known as type II IFN. While untreated animals infected with wild type VACV die by 10 days post-infection (dpi), animals treated with v50ΔB13RMγ 1 dpi had decreased morbidity and 100% survival. Despite these differences, the viral load was similar in both groups suggesting that v50ΔB13RMγ acts as an immunoregulator rather than as an antiviral. One of the main characteristics of VACV is its resistance to type I IFN, an effect primarily mediated by the E3L protein, which has a Z-DNA binding domain and a double-stranded RNA (dsRNA) binding domain. In the third chapter a VACV that independently expresses both domains of E3L was engineered and compared to wild type in cells in culture. The dual expression virus was unable to replicate in the JC murine cell line where both domains are needed together for replication. Moreover, phosphorylation of the dsRNA dependent protein kinase (PKR) was observed at late times post-infection which indicates that both domains need to be linked together in order to block the IFN response. Because smallpox has already been eradicated, the utility of mathematical modeling as a tool for predicting disease spread and vaccine efficacy was explored in the last chapter using dengue as a disease model. Current modeling approaches were reviewed and the 2000-2001 dengue outbreak in a Peruvian region was analyzed. This last section highlights the importance of interdisciplinary collaboration and how it benefits research on infectious diseases.
ContributorsHolechek, Susan A (Author) / Jacobs, Bertram L (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Frasch, Wayne (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
154855-Thumbnail Image.png
Description
The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to antiretroviral therapy. Therefore, an HIV-1 vaccine is still desperately needed. The most successful HIV-1 clinical trial to date used a

The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to antiretroviral therapy. Therefore, an HIV-1 vaccine is still desperately needed. The most successful HIV-1 clinical trial to date used a non-replicating canarypox viral vector and protein boosting, yet its modest efficacy left room for improvement. Efforts to derive novel vectors which can be both safe and immunogenic, have spawned a new era of live, viral vectors. One such vaccinia virus vector, NYVAC-KC, was specifically designed to replicate in humans and had several immune modulators deleted to improve immunogenicity and reduce pathogenicity. Two NYVAC-KC vectors were generated: one expressing the Gag capsid, and one with deconstructed-gp41 (dgp41), which contains an important neutralizing antibody target, the membrane proximal external region (MPER). These vectors were combined with HIV-1 Gag/dgp41 virus-like particles (VLPs) produced in the tobacco-relative Nicotiana benthamiana. Different plant expression vectors were compared in an effort to improve yield. A Geminivirus-based vector was shown to increase the amount of MPER present in VLPs, thus potentially enhancing immunogenicity. Furthermore, these VLPs were shown to interact with the innate immune system through Toll-like receptor (TLR) signaling, which activated antigen presenting cells to induce a Th2-biased response in a TLR-dependent manner. Furthermore, expression of Gag and dgp41 in NYVAC-KC vectors resulted in activation of antiviral signaling pathways reliant on TBK1/IRF3, which necessitated the use of higher doses in mice to match the immunogenicity of wild-type viral vectors. VLPs and NYVAC-KC vectors were tested in mice, ultimately showing that the best antibody and Gag-specific T cell responses were generated when both components were administered simultaneously. Thus, plant-produced VLPs and poxvirus vectors represent a highly immunogenic HIV-1 vaccine candidate that warrants further study.
ContributorsMeador, Lydia Rebecca (Author) / Mor, Tsafrir S (Thesis advisor) / Jacobs, Bertram L (Thesis advisor) / Blattman, Joseph N (Committee member) / Mason, Hugh S (Committee member) / Arizona State University (Publisher)
Created2016
158395-Thumbnail Image.png
Description
Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV)

Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV) has a large genome, contains many immune evasion genes and has been thoroughly studied, making it a popular candidate for an oncolytic platform. VACV mutants with deletions in the E3 immune evasion protein have been shown to have oncolytic efficacy but the mechanism of tumor selectivity has not been fully elucidated. These mutants have been shown to be regulated by the necroptosis pathway, a pathway that has been shown to be deficient in certain cancers. Using a pan-cancer screening method that combines dye exclusion assays, western blot analysis, and viral growth curve, the role of necroptosis in regulating VACV replication and oncolytic efficacy in cancer was further characterized. Results demonstrate a preliminary correlation between necroptosis, viral replication, and oncolytic efficacy. This correlation is clearest in breast cancer and melanomas yet may apply to other cancer subgroups. This data was also used to guide the development of a receptor-interacting protein kinase 3 (RIP3) matched pair mouse model in the E0771 mouse breast cancer line which can be used to further study the role of necroptosis and oncolytic efficacy in vivo. Understanding the contribution necroptosis plays in oncolytic efficacy can guide to design enhance the design of clinical trials to test VACV E3L mutants and may lead to better efficacy in humans and an improvement in clinical oncology.
ContributorsKasimsetty, Aradhana (Author) / Jacobs, Bertram L (Thesis advisor) / McFadden, Douglas G (Committee member) / Borad, Mitesh (Committee member) / Arizona State University (Publisher)
Created2020