Matching Items (9)
Filtering by

Clear all filters

151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
154957-Thumbnail Image.png
Description
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex

Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
ContributorsRushforth, Richard Ray (Author) / Ruddell, Benajmin L (Thesis advisor) / Allenby, Braden (Committee member) / Chester, Mikhail (Committee member) / Seager, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
187828-Thumbnail Image.png
Description
With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to

With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to facilitate SDGs planning and implementation by incorporating synergies, co-benefits, and trade-offs. In this dissertation, I conduct three interrelated WEF nexus studies using a sustainability lens to develop new approaches and identify actionable measures to support the SDGs. The first paper is a systematic literature review (2015 – 2022) to investigate the extent to which WEF nexus research has generated actionable knowledge to achieve the SDGs. The findings show that the WEF nexus literature explicitly considering the SDGs mainly focuses on governance and environmental protection, with fewer studies focusing on target populations and affordability. In the second paper, I reframed the water quality concerns using a nexus and systems thinking approach in a FEW nexus hotspot, the Rio Negro Basin (RNB) in Uruguay. While Uruguay is committed to the 2030 Agenda for Sustainable Development, sustainability challenges endure in managing synergies and trade-offs, resulting in strategy setbacks for the sustainable development of food, land, water, and oceans. Reframing the water quality problem facilitated the identification of potential alternative intervention points to support local problem-solving capacity. In the third paper, I conducted semi-structured interviews and examined the meeting transcripts of the RNB Commission to understand local perspectives about how the activities and initiatives taking place in the basin enhance or diminish the overall sustainability. Sustainability criteria for river basin planning and management were operationalized through qualitative appraisal questions. The case of the RNB illustrates the challenges of coordinating the national development agenda to local livelihood. This dissertation advances the WEF nexus and sustainability science literature by shedding light on the implications of the research trend to support the SDGs, as well as reframing and appraising a persistent water quality problem to support sustainable development.
ContributorsOjeda Matos, Glorynel (Author) / White, Dave D (Thesis advisor) / Brundiers, Katja (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2023
171569-Thumbnail Image.png
Description
This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious

This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious metals in both American and Chinese sewage sludges. 13 rare elements were found in American sewage sludge while 14 were found in Chinese sewage sludge. Modeling results indicated 251 to 282 million metric tons (MMT) of SS from 2022 to 2050, estimated to contain some 6.8 ± 0.5 MMT of valuable elements in the USA, the reclamation of which is valued at $24B ± $1.6B USD. China is predicted to produce between 819 - 910 MMT of SS between 2022 and 2050 containing an estimated 14.9 ± 1.7 MMT of valuable elements worth a cumulative amount of $94B ± 20B (Chapter 2 and 3). The 4th chapter modeled how much plastic waste Coca-Cola, PespiCo and Nestlé produced and globally dispersed in 21 years: namely an estimated 126 MMT ± 8.7 MMT of plastic. Some 15.6 MMT ± 1.3 MMT (12%) is projected to have become aquatic pollution costing estimated at $286B USD. Some 58 ± 5 MMT or 46% of the total mass were estimated to result in terrestrial plastic pollution, with only minor amounts of 9.9 ± 0.7 MMT, deemed actually recycled. Absent of change, the three companies are predicted to generate an additional 330 ± 15 MMT of plastic by 2050, thereby creating estimated externalities of $8 ± 0.4 trillion USD. The analysis suggests that a small subset of FMCG companies are well positioned to change the current trajectory of global plastic pollution and ocean plastic littering. Chapter 5 examined the barriers to Circular Economy. In an increasingly uncertain post pandemic world, it is becoming progressively important to conserve local resources and extract value from materials that are currently interpreted a “waste” rather than a current or potential future resource.
ContributorsBiyani, Nivedita (Author) / Halden, Rolf U. (Thesis advisor) / Allenby, Braden (Committee member) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2022
171625-Thumbnail Image.png
Description
The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are

The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are more uncertain. Climate change will also likely cause a reduction in surface water supply sources. Under these constraints, the expansion of renewable energy technology has the potential to benefit both water and energy systems and increase environmental sustainability by meeting future energy demands while lowering water use and CO2 emissions. However, the WEN synergies generated by renewables have not yet been thoroughly quantified, nor have the related costs been studied and compared to alternative options.Quantifying WEN intercations using numerical models is key to assessing renewable energy synergy. Despite recent advances, WEN models are still in their infancy, and research is needed to improve their accuracy and identify their limitations. Here, I highlight three research needs. First, most modeling efforts have been conducted for large-scale domains (e.g., states), while smaller scales, like metropolitan regions, have received less attention. Second, impacts of adopting different temporal (e.g., monthly, annual) and spatial (network granularity) resolutions on simulation accuracy have not been quantified. Third, the importance of simulating feedbacks between water and energy components has not been analyzed. This dissertation fills these major research gaps by focusing on long-term water allocations and energy dispatch in the metropolitan region of Phoenix. An energy model is developed using the Low Emissions Analysis Platform (LEAP) platform and is subsequently coupled with a water management model based on the Water Evaluation and Planning (WEAP) platform. Analyses are conducted to quantify (1) the value of adopting coupled models instead of single models that are externally coupled, and (2) the accuracy of simulations based on different temporal resolutions of supply and demand and spatial granularity of the water and energy networks. The WEAP-LEAP integrated model is then employed under future climate scenarios to quantify the potential of renewable energy technologies to develop synergies between the PMA's water and energy systems.
ContributorsMounir, Adil (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2022
171699-Thumbnail Image.png
Description
Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics

Crises at Teton Dam in 1976, Roosevelt Dam in 1980, Tempe Town Lake Dam in 2010, Oroville Dam in 2017, and the Edenville and Sanford Dams in 2020 prove the substantial and continuing threats to communities posed by major dams. Sociotechnical systems of dams encompass both social or governance characteristics as well as the technical or architectural characteristics. To reduce or overcome chances of failure, experts traditionally focus on making the architectural characteristics of dams safe from potential modes of failure. However, governance characteristics such as laws, building codes, and emergency actions plans also affect the ability of systems of dams that include downstream communities to sustainably adapt to crises. Increasingly, emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires worsen known modes of failure such as overtopping.Considering these emerging threats, my research assesses whether the architectural and governance characteristics of the aging population of systems of dams in the United States can sustainably adapt to challenges posed by emerging threats. First, by analyzing architectural characteristics of dams, my research provides a useful definition of infrastructures of dams. Next, to assess the governance characteristics of dams, I review institutional documents to heuristically outline seven sociotechnical imaginaries and assess whether an eighth based on resilience is appearing. Further, by analyzing interview transcripts and professional conference presentations, and by conducting case studies, my research reveals ways that experts and stakeholders assess the safety and resilience of systems of dams. The combined findings of these studies suggest that experts and stakeholders are not sufficiently informed about or focused upon important aspects of the resilience of dams. Therefore, they may not be able to sustainably adapt to crises caused or worsened by emerging threats such as climate change, earthquakes, terrorism, cyberattacks, or wildfires. I offer explanations of why this is so and formulate recommendations.
ContributorsDwyer, Kevin Thomas (Author) / Fisher, Erik (Thesis advisor) / Maynard, Andrew (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2022
171721-Thumbnail Image.png
Description
Cities are facing complex problems in urban water management due to unprecedented changes in climate, natural and built environment. The shift in urban hydrology from pre-development to post-development continues to accelerate the challenges of managing excess stormwater runoff, mitigating urban flood hazards and flood damages. Physically based hydrologic-hydraulic stormwater models

Cities are facing complex problems in urban water management due to unprecedented changes in climate, natural and built environment. The shift in urban hydrology from pre-development to post-development continues to accelerate the challenges of managing excess stormwater runoff, mitigating urban flood hazards and flood damages. Physically based hydrologic-hydraulic stormwater models are a useful tool for broad subset of urban flood management including risk and hazard assessment, flood forecasting, and infrastructure adaptation decision making and planning. The existing limitations in data availability, gaps in data, and uncertainty in data preclude reliable model construction, testing, deployment, knowledge generation, effective communication of flood risks, and adaptation decision making. These challenges that affect both the science and practice motivate three chapters of this dissertation. The first study conducts diagnostic analysis of the effects of stormwater infrastructure data completeness on model’s ability to simulate flood duration, flooding flow rate; and assesses the combined effects of data gaps and model resolution to simulate flood depth, extent and volume (chapter 2). The analysis showed the significance of complete stormwater infrastructure data and high model resolution to reduce error, bias and uncertainty; this study also presented an approach for filling infrastructure data gaps using available data and design standards. The second study addresses the lack of long-term hydrological observation in urban catchment by investigating the process and benefits of leveraging novel data sources in urban flood model construction and testing (chapter 3). A proof-of-concept demonstrated the application and benefits of leveraging novel data sources for urban flood monitoring and modeling. Furthermore, it highlights the need for developing and streamlining novel data collection infrastructure. The third study applies the hydrologic-hydraulic model as an adaptation planning tool and assess the effects of uncertainty in design precipitation estimates and land use change on the optimal configuration of green infrastructure (chapter 4). Several uncertainties affect infrastructure decision making as showed by variation in optimal green infrastructure configuration under precipitation estimates and land use change. Thus, the study further highlights the need of flexible planning process in infrastructure decision making.
ContributorsShrestha, Ashish (Author) / Garcia, Margaret (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Chester, Mikhail (Committee member) / Fletcher, Sarah (Committee member) / Arizona State University (Publisher)
Created2022
161630-Thumbnail Image.png
Description
There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve

There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve outdoor irrigation management. With the goal of reducing outdoor water use and advancing the general knowledge of water fluxes in urban parks, this study explores water conservation opportunities in an arid city through observations and modeling.Most urban parks in Phoenix consist of a mosaic of turfgrass and trees which receive scheduled maintenance, fertilization and watering through sprinkler or flood irrigation. In this study, the effects that different watering practices, turfgrass management and soil conditions have on soil moisture observations in urban parks are evaluated. Soil moisture stations were deployed at three parks with stations at control plots with no compost application and compost treated sites with either a once or twice per year application instead of traditional fertilizer. An eddy covariance system was installed at a park to help quantify water losses and water, energy and carbon fluxes between the turfgrass and atmosphere. Additional meteorological observations are provided through a network of weather stations. The assessment covers over one year of observations, including the period of turfgrass growth in the warm season, and a period of dormancy during the cool season. The observations were used to setup and test a plot-scale soil water balance model to simulate changes in daily soil moisture in response to irrigation, precipitation and evapotranspiration demand for each park. Combining modeling and observations of climate-soil-vegetation processes, I provide guidance on irrigation schedules and management that could help minimize water losses while supporting turfgrass health in desert urban parks. The irrigation scenarios suggest that water savings of at least 18% can be achieved at the three sites. While the application of compost treatment to study plots did not show clear improvements in soil water retention when compared to the control plots, this study shows that water conservation can be promoted while maintaining low plant water stress.
ContributorsKindler, Mercedes (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2021