Matching Items (5)
Filtering by

Clear all filters

153134-Thumbnail Image.png
Description
This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution

This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality.
ContributorsUlett, Mark Andrew (Author) / Laubichler, Manfred D (Thesis advisor) / Hall, Brian K (Committee member) / Lynch, John (Committee member) / Maienschein, Jane (Committee member) / Smocovitis, Vassiliki B (Committee member) / Arizona State University (Publisher)
Created2014
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
155158-Thumbnail Image.png
Description
MicroRNAs (miRNAs) are short non-coding RNAs that play key roles during metazoan development, and are frequently misregulated in human disease. MiRNAs regulate gene output by targeting degenerate elements primarily in the 3´ untranslated regions of mRNAs. MiRNAs are often deeply conserved, but have undergone drastic expansions in higher metazoans, leading

MicroRNAs (miRNAs) are short non-coding RNAs that play key roles during metazoan development, and are frequently misregulated in human disease. MiRNAs regulate gene output by targeting degenerate elements primarily in the 3´ untranslated regions of mRNAs. MiRNAs are often deeply conserved, but have undergone drastic expansions in higher metazoans, leading to families of miRNAs with highly similar sequences. The evolutionary advantage of maintaining multiple copies of duplicated miRNAs is not well understood, nor has the distinct functions of miRNA family members been systematically studied. Furthermore, the unbiased and high-throughput discovery of targets remains a major challenge, yet is required to understand the biological function of a given miRNA.

I hypothesize that duplication events grant miRNA families with enhanced regulatory capabilities, specifically through distinct targeting preferences by family members. This has relevance for our understanding of vertebrate evolution, as well disease detection and personalized medicine. To test this hypothesis, I apply a conjunction of bioinformatic and experimental approaches, and design a novel high-throughput screening platform to identify human miRNA targets. Combined with conventional approaches, this tool allows systematic testing for functional targets of human miRNAs, and the identification of novel target genes on an unprecedented scale.

In this dissertation, I explore evolutionary signatures of 62 deeply conserved metazoan miRNA families, as well as the targeting preferences for several human miRNAs. I find that constraints on miRNA processing impact sequence evolution, creating evolutionary hotspots within families that guide distinct target preferences. I apply our novel screening platform to two cancer-relevant miRNAs, and identify hundreds of previously undescribed targets. I also analyze critical features of functional miRNA target sites, finding that each miRNA recognizes surprisingly distinct features of targets. To further explore the functional distinction between family members, I analyze miRNA expression patterns in multiple contexts, including mouse embryogenesis, RNA-seq data from human tissues, and cancer cell lines. Together, my results inform a model that describes the evolution of metazoan miRNAs, and suggests that highly similar miRNA family members possess distinct functions. These findings broaden our understanding of miRNA function in vertebrate evolution and development, and how their misexpression contributes to human disease.
ContributorsWolter, Justin M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Kusumi, Kenro (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2016
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
157760-Thumbnail Image.png
Description
Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions

Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions are unknown. Conducting transgenic experiments in the adult wings,

and third instar larval brains using mCORL1, mCORL2 and dCORL are used to provide

insight into the function of these proteins. These experiments show mCORL1 has a

different function from mCORL2 and dCORL when expressed in Drosophila. mCORL2

and dCORL have functional similarities that are likely conserved. Six amino acid

substitutions between mCORL1 and mCORL2/dCORL may be the reason for the

functional difference. The evolutionary implications of this research suggest the

conservation of a switch between Dpp/dActivin signaling that predates the divergence of

arthropods and vertebrates.
ContributorsStinchfield, Michael J (Author) / Newfeld, Stuart J (Thesis advisor) / Capco, David (Committee member) / Laubichler, Manfred (Committee member) / Arizona State University (Publisher)
Created2019