Matching Items (10)
Filtering by

Clear all filters

152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
154709-Thumbnail Image.png
Description
This is a project about medicine and the history of a condition called premenstrual syndrome (PMS), its “discovery” and conceptual development at both scientific and socio-cultural levels. Since it was first mentioned in medical literature, PMS has been explored empirically as a medical condition and conceptually as non-somatic cultural phenomenon.

This is a project about medicine and the history of a condition called premenstrual syndrome (PMS), its “discovery” and conceptual development at both scientific and socio-cultural levels. Since it was first mentioned in medical literature, PMS has been explored empirically as a medical condition and conceptually as non-somatic cultural phenomenon. Many attempts have been made to produce scientific, empirical evidence to bolster the theory of PMS as a biological disease. Some non-medical perspectives argue that invoking biology as the cause of PMS medicalizes a natural function of the female reproductive system and shallowly interrogates what is actually a complex bio-psycho-social phenomenon. This thesis questions both sides of this debate in order to reveal how criteria for PMS were categorized despite disagreement surrounding its etiology.

This thesis illustrates how the concept of PMS developed and was informed by the discovery of hormones and the resulting field of endocrinology that provided a framework for conceptualizing PMS. It displays how the development of the medical diagnostic category of PMS developed in tandem with the emergence of the field of endocrinology and was legitimized and effectively medicalized through this connection. The diagnosis of PMS became established though the diagnostic techniques like questionnaires in spite of persistent disagreement over its definition. The thesis shows how these medical concepts and practices legitimated the category of PMS, and how it has become ubiquitous in contemporary culture.
ContributorsZietal, Bianca (Author) / Hurlbut, James (Thesis advisor) / Robert, Jason (Committee member) / Brian, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154280-Thumbnail Image.png
Description
The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses

The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses this question both from a narrative/historical and from a reflective/epistemological perspective. The historical narratives reconstruct the investigative pathways of the Italian entomologist Leo Pardi (1915-1990) and the British evolutionary biologist William D. Hamilton (1936-2000). The works of these two scientists represent respectively the beginning of our current understanding of immediate and evolutionary causes of social life. Chapter 1 shows how Pardi, in the 1940s, generated a conceptual framework to explain how wasp colonies function in terms of social and reproductive dominance. Chapter 2 shows how Hamilton, in the 1960s, attempted to evaluate his own theory of inclusive fitness by investigating social wasps. The epistemological reflections revolve around the idea of investigative framework for theory evaluation. Chapter 3 draws on the analysis of important studies on social wasps from the 1960s and 1970s and provides an account of theory evaluation in the form of an investigative framework. The framework shows how inferences from empirical data (bottom-up) and inferences from the theory (top-down) inform one another in the generation of hypotheses, predictions and statements about phenomena of social evolution. It provides an alternative to existing philosophical accounts of scientific inquiry and theory evaluation, which keep a strong, hierarchical distinction between inferences from the theory and inferences from the data. The historical narratives in this dissertation show that important scientists have advanced our knowledge of complex biological phenomena by constantly interweaving empirical, conceptual, and theoretical work. The epistemological reflections argue that we need holistic frameworks that account for how multiple scientific practices synergistically contribute to advance our knowledge of complex phenomena. Both narratives and reflections aim to inspire and inform future work in social evolution capitalizing on lessons learnt from the past.
ContributorsCaniglia, Guido (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Mitchell, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
154993-Thumbnail Image.png
Description
In the fifteen years between the discovery of fetal alcohol syndrome (FAS) in 1973 and the passage of alcohol beverage warning labels in 1988, FAS transformed from a medical diagnosis between practitioner and pregnant women to a broader societal risk imbued with political and cultural meaning. I examine how scientific,

In the fifteen years between the discovery of fetal alcohol syndrome (FAS) in 1973 and the passage of alcohol beverage warning labels in 1988, FAS transformed from a medical diagnosis between practitioner and pregnant women to a broader societal risk imbued with political and cultural meaning. I examine how scientific, social, moral, and political narratives dynamically interacted to construct the risk of drinking during pregnancy and the public health response of health warning labels on alcohol. To situate such phenomena I first observe the closest regulatory precedents, the public health responses to thalidomide and cigarettes, which established a federal response to fetal risk. I then examine the history of how the US defined and responded to the social problem of alcoholism, paying particular attention to the role of women in that process. Those chapters inform my discussion of how the US reengaged with alcohol control at the federal level in the last quarter of the twentieth century. In the 1970s, FAS allowed federal agencies to carve out disciplinary authority, but robust public health measures were tempered by uncertainty surrounding issues of bureaucratic authority over labeling, and the mechanism and extent of alcohol’s impact on development. A socially conservative presidency, dramatic budgetary cuts, and increased industry funding reshaped the public health approach to alcoholism in the 1980s. The passage of labeling in 1988 required several conditions: a groundswell of other labeling initiatives that normalized the practice; the classification of other high profile, socially unacceptable alcohol-related behaviors such as drunk driving and youth drinking; and the creation of a dual public health population that faced increased medical, social, and political scrutiny, the pregnant woman and her developing fetus.
ContributorsO'Neil, Erica (Author) / Maienschein, Jane (Thesis advisor) / Hurlbut, James (Committee member) / Ellison, Karin (Committee member) / Wetmore, Jameson (Committee member) / Arizona State University (Publisher)
Created2016
155366-Thumbnail Image.png
Description
This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological

This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological research programs, i.e. research programs that explore the process of changing form. Subsequently, the way in which investigators have pursued and understood morphology has witnessed significant changes from the 19th century to modern day research. In order to trace this shifting history of morphology, I have selected a particular organ, teeth, and traced a tendril of research on the dentition beginning in the late 19th century and ending at the year 2000. But even focusing on teeth would be impossible; the scope of research on this organ is far too vast. Instead, I narrow this dissertation to investigation of research on a particular problem: explaining mammalian tooth morphology. How researchers have investigated mammalian tooth morphology and what counts as an explanation changed dramatically during this period.
ContributorsMacCord, Katherine (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Laplane, Lucie (Committee member) / Kimbel, William (Committee member) / Creath, Richard (Committee member) / Hurlbut, Benjamin (Committee member) / Arizona State University (Publisher)
Created2017
157324-Thumbnail Image.png
Description
This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism

This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism coordinated the CITC, but the committee included members from observatories and laboratories across the United States. The CITC, which operated from 1954 to 1976, sought to replace direct photography as the primary means of astronomical imaging.

Physicists, who gained training in electronics during World War II, led the early push for the development of image tubes in astronomy. Vannevar Bush’s concern for scientific prestige led him to form a committee to investigate image tube technology, and postwar federal funding for the sciences helped the CITC sustain development efforts for a decade. During those development years, the CITC acted as a mediator between the astronomical community and the image tube producers but failed to engage astronomers concerning various development paths, resulting in a user group without real buy-in on the final product.

After a decade of development efforts, the CITC designed an image tube, which Radio Corporation of American manufactured, and, with additional funding from the National Science Foundation, the committee distributed to observatories around the world. While excited about the potential of electronic imaging, few astronomers used the Carnegie-developed device regularly. Although the CITC’s efforts did not result in an overwhelming adoption of image tubes by the astronomical community, examining the design, funding, production, and marketing of the Carnegie image tube shows the many and varied processes through which astronomers have acquired new tools. Astronomers’ use of the Carnegie image tube to acquire useful scientific data illustrates factors that contribute to astronomers’ adoption or non-adoption of those new tools.
ContributorsThompson, Samantha Michelle (Author) / Ellison, Karin (Thesis advisor) / Wetmore, Jameson (Thesis advisor) / Maienschein, Jane (Committee member) / Creath, Richard (Committee member) / DeVorkin, David (Committee member) / Arizona State University (Publisher)
Created2019
155234-Thumbnail Image.png
Description
At the interface of developmental biology and evolutionary biology, the very

criteria of scientific knowledge are up for grabs. A central issue is the status of evolutionary genetics models, which some argue cannot coherently be used with complex gene regulatory network (GRN) models to explain the same evolutionary phenomena. Despite those

At the interface of developmental biology and evolutionary biology, the very

criteria of scientific knowledge are up for grabs. A central issue is the status of evolutionary genetics models, which some argue cannot coherently be used with complex gene regulatory network (GRN) models to explain the same evolutionary phenomena. Despite those claims, many researchers use evolutionary genetics models jointly with GRN models to study evolutionary phenomena.

How do those researchers deploy those two kinds of models so that they are consistent and compatible with each other? To address that question, this dissertation closely examines, dissects, and compares two recent research projects in which researchers jointly use the two kinds of models. To identify, select, reconstruct, describe, and compare those cases, I use methods from the empirical social sciences, such as digital corpus analysis, content analysis, and structured case analysis.

From those analyses, I infer three primary conclusions about projects of the kind studied. First, they employ an implicit concept of gene that enables the joint use of both kinds of models. Second, they pursue more epistemic aims besides mechanistic explanation of phenomena. Third, they don’t work to create and export broad synthesized theories. Rather, they focus on phenomena too complex to be understood by a common general theory, they distinguish parts of the phenomena, and they apply models from different theories to the different parts. For such projects, seemingly incompatible models are synthesized largely through mediated representations of complex phenomena.

The dissertation closes by proposing how developmental evolution, a field traditionally focused on macroevolution, might fruitfully expand its research agenda to include projects that study microevolution.
ContributorsElliott, Steve (Author) / Creath, Richard (Thesis advisor) / Laubichler, Manfred D. (Thesis advisor) / Armendt, Brad (Committee member) / Forber, Patrick (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
171970-Thumbnail Image.png
Description
Writing speculative fiction is a valuable method for exploring the potential societal transformations elicited by advances in science and technology. The aim of this project is to use speculative fiction to explore the potential consequences of precision medicine for individuals’ daily lives. Precision medicine is a vision of the future

Writing speculative fiction is a valuable method for exploring the potential societal transformations elicited by advances in science and technology. The aim of this project is to use speculative fiction to explore the potential consequences of precision medicine for individuals’ daily lives. Precision medicine is a vision of the future in which medicine is about predicting, and ultimately preventing disease before symptoms arise. The idea is that identification of all the factors that influence health and contribute to disease development will translate to better and less expensive healthcare and empower individuals to take responsibility for maintaining their own health and wellness. That future, as envisioned by the leaders of the Human Genome Project, the Institute for Systems Biology, and the Obama administration’s Precision Medicine Initiative, is assumed to be a shared future, one that everyone desires and that is self-evidently “better” than the present. The aim of writing speculative fiction about a “precision medicine” future is to challenge that assumption, to make clear the values underpinning that vision of precision medicine, and to leave open the question of what other possible futures could be imagined instead.
ContributorsVenkatraman, Richa (Author) / Brian, Jennifer (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, James (Committee member) / Arizona State University (Publisher)
Created2022