Matching Items (2)
Filtering by

Clear all filters

151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
150196-Thumbnail Image.png
Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
ContributorsLiu, Guang (Author) / Chattopadhyay, Aditi (Thesis advisor) / Mignolet, Marc (Committee member) / Jiang, Hanqing (Committee member) / Li, Jian (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011