Matching Items (14)

158117-Thumbnail Image.png

Zero Shot Learning for Visual Object Recognition with Generative Models

Description

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area.

Contributors

Agent

Created

Date Created
  • 2020

151926-Thumbnail Image.png

Building adaptive computational systems for physiological and biomedical data

Description

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.

Contributors

Agent

Created

Date Created
  • 2013

158010-Thumbnail Image.png

Data-Efficient Reinforcement Learning Control of Robotic Lower-Limb Prosthesis With Human in the Loop

Description

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task environments. Reinforcement learning (RL) is capable of automatically learning from interacting with the environment. It becomes a natural candidate to replace human prosthetists to customize the control parameters. However, neither traditional RL approaches nor the popular deep RL approaches are readily suitable for learning with limited number of samples and samples with large variations. This dissertation aims to explore new RL based adaptive solutions that are data-efficient for controlling robotic prostheses.

This dissertation begins by proposing a new flexible policy iteration (FPI) framework. To improve sample efficiency, FPI can utilize either on-policy or off-policy learning strategy, can learn from either online or offline data, and can even adopt exiting knowledge of an external critic. Approximate convergence to Bellman optimal solutions are guaranteed under mild conditions. Simulation studies validated that FPI was data efficient compared to several established RL methods. Furthermore, a simplified version of FPI was implemented to learn from offline data, and then the learned policy was successfully tested for tuning the control parameters online on a human subject.

Next, the dissertation discusses RL control with information transfer (RL-IT), or knowledge-guided RL (KG-RL), which is motivated to benefit from transferring knowledge acquired from one subject to another. To explore its feasibility, knowledge was extracted from data measurements of able-bodied (AB) subjects, and transferred to guide Q-learning control for an amputee in OpenSim simulations. This result again demonstrated that data and time efficiency were improved using previous knowledge.

While the present study is new and promising, there are still many open questions to be addressed in future research. To account for human adaption, the learning control objective function may be designed to incorporate human-prosthesis performance feedback such as symmetry, user comfort level and satisfaction, and user energy consumption. To make the RL based control parameter tuning practical in real life, it should be further developed and tested in different use environments, such as from level ground walking to stair ascending or descending, and from walking to running.

Contributors

Agent

Created

Date Created
  • 2020

154086-Thumbnail Image.png

Transfer Learning for BioImaging and Bilingual Applications

Description

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms.

Contributors

Agent

Created

Date Created
  • 2015

154099-Thumbnail Image.png

A probabilistic framework of transfer learning- theory and application

Description

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.

Contributors

Agent

Created

Date Created
  • 2015

154717-Thumbnail Image.png

Land use and land cover classification using deep learning techniques

Description

Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a

Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery. However, the appearances of these things vary based on many things including the time that the image is captured, the sensor settings, processing done to rectify the image, and the geographical and cultural context of the region captured by the image. This thesis explores the use of deep convolutional neural networks to classify land use from very high spatial resolution (VHR), orthorectified, visible band multispectral imagery. Recent technological and commercial applications have driven the collection a massive amount of VHR images in the visible red, green, blue (RGB) spectral bands, this work explores the potential for deep learning algorithms to exploit this imagery for automatic land use/ land cover (LULC) classification. The benefits of automatic visible band VHR LULC classifications may include applications such as automatic change detection or mapping. Recent work has shown the potential of Deep Learning approaches for land use classification; however, this thesis improves on the state-of-the-art by applying additional dataset augmenting approaches that are well suited for geospatial data. Furthermore, the generalizability of the classifiers is tested by extensively evaluating the classifiers on unseen datasets and we present the accuracy levels of the classifier in order to show that the results actually generalize beyond the small benchmarks used in training. Deep networks have many parameters, and therefore they are often built with very large sets of labeled data. Suitably large datasets for LULC are not easy to come by, but techniques such as refinement learning allow networks trained for one task to be retrained to perform another recognition task. Contributions of this thesis include demonstrating that deep networks trained for image recognition in one task (ImageNet) can be efficiently transferred to remote sensing applications and perform as well or better than manually crafted classifiers without requiring massive training data sets. This is demonstrated on the UC Merced dataset, where 96% mean accuracy is achieved using a CNN (Convolutional Neural Network) and 5-fold cross validation. These results are further tested on unrelated VHR images at the same resolution as the training set.

Contributors

Agent

Created

Date Created
  • 2016

157587-Thumbnail Image.png

Learning from task heterogeneity in social media

Description

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides an excellent opportunity to mine data of interest and to build resourceful applications. The rise in the number of healthcare-related social media platforms and the volume of healthcare knowledge available online in the last decade has resulted in increased social media usage for personal healthcare. In the United States, nearly ninety percent of adults, in the age group 50-75, have used social media to seek and share health information. Motivated by the growth of social media usage, this thesis focuses on healthcare-related applications, study various challenges posed by social media data, and address them through novel and effective machine learning algorithms.

The major challenges for effectively and efficiently mining social media data to build functional applications include: (1) Data reliability and acceptance: most social media data (especially in the context of healthcare-related social media) is not regulated and little has been studied on the benefits of healthcare-specific social media; (2) Data heterogeneity: social media data is generated by users with both demographic and geographic diversity; (3) Model transparency and trustworthiness: most existing machine learning models for addressing heterogeneity are considered as black box models, not many providing explanations for why they do what they do to trust them.

In response to these challenges, three main research directions have been investigated in this thesis: (1) Analyzing social media influence on healthcare: to study the real world impact of social media as a source to offer or seek support for patients with chronic health conditions; (2) Learning from task heterogeneity: to propose various models and algorithms that are adaptable to new social media platforms and robust to dynamic social media data, specifically on modeling user behaviors, identifying similar actors across platforms, and adapting black box models to a specific learning scenario; (3) Explaining heterogeneous models: to interpret predictive models in the presence of task heterogeneity. In this thesis, novel algorithms with theoretical analysis from various aspects (e.g., time complexity, convergence properties) have been proposed. The effectiveness and efficiency of the proposed algorithms is demonstrated by comparison with state-of-the-art methods and relevant case studies.

Contributors

Agent

Created

Date Created
  • 2019

157808-Thumbnail Image.png

Novel Deep Learning Models for Medical Imaging Analysis

Description

Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making.

Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.

Contributors

Agent

Created

Date Created
  • 2019

157752-Thumbnail Image.png

Cross Platform Training of Neural Networks to Enable Object Identification by Autonomous Vehicles

Description

Autonomous vehicle technology has been evolving for years since the Automated Highway System Project. However, this technology has been under increased scrutiny ever since an autonomous vehicle killed Elaine Herzberg,

Autonomous vehicle technology has been evolving for years since the Automated Highway System Project. However, this technology has been under increased scrutiny ever since an autonomous vehicle killed Elaine Herzberg, who was crossing the street in Tempe, Arizona in March 2018. Recent tests of autonomous vehicles on public roads have faced opposition from nearby residents. Before these vehicles are widely deployed, it is imperative that the general public trusts them. For this, the vehicles must be able to identify objects in their surroundings and demonstrate the ability to follow traffic rules while making decisions with human-like moral integrity when confronted with an ethical dilemma, such as an unavoidable crash that will injure either a pedestrian or the passenger.

Testing autonomous vehicles in real-world scenarios would pose a threat to people and property alike. A safe alternative is to simulate these scenarios and test to ensure that the resulting programs can work in real-world scenarios. Moreover, in order to detect a moral dilemma situation quickly, the vehicle should be able to identify objects in real-time while driving. Toward this end, this thesis investigates the use of cross-platform training for neural networks that perform visual identification of common objects in driving scenarios. Here, the object detection algorithm Faster R-CNN is used. The hypothesis is that it is possible to train a neural network model to detect objects from two different domains, simulated or physical, using transfer learning. As a proof of concept, an object detection model is trained on image datasets extracted from CARLA, a virtual driving environment, via transfer learning. After bringing the total loss factor to 0.4, the model is evaluated with an IoU metric. It is determined that the model has a precision of 100% and 75% for vehicles and traffic lights respectively. The recall is found to be 84.62% and 75% for the same. It is also shown that this model can detect the same classes of objects from other virtual environments and real-world images. Further modifications to the algorithm that may be required to improve performance are discussed as future work.

Contributors

Agent

Created

Date Created
  • 2019

158615-Thumbnail Image.png

Self-supervised Representation Learning via Image Out-painting for Medical Image Analysis

Description

In recent years, Convolutional Neural Networks (CNNs) have been widely used in not only the computer vision community but also within the medical imaging community. Specifically, the use of pre-trained

In recent years, Convolutional Neural Networks (CNNs) have been widely used in not only the computer vision community but also within the medical imaging community. Specifically, the use of pre-trained CNNs on large-scale datasets (e.g., ImageNet) via transfer learning for a variety of medical imaging applications, has become the de facto standard within both communities.

However, to fit the current paradigm, 3D imaging tasks have to be reformulated and solved in 2D, losing rich 3D contextual information. Moreover, pre-trained models on natural images never see any biomedical images and do not have knowledge about anatomical structures present in medical images. To overcome the above limitations, this thesis proposes an image out-painting self-supervised proxy task to develop pre-trained models directly from medical images without utilizing systematic annotations. The idea is to randomly mask an image and train the model to predict the missing region. It is demonstrated that by predicting missing anatomical structures when seeing only parts of the image, the model will learn generic representation yielding better performance on various medical imaging applications via transfer learning.

The extensive experiments demonstrate that the proposed proxy task outperforms training from scratch in six out of seven medical imaging applications covering 2D and 3D classification and segmentation. Moreover, image out-painting proxy task offers competitive performance to state-of-the-art models pre-trained on ImageNet and other self-supervised baselines such as in-painting. Owing to its outstanding performance, out-painting is utilized as one of the self-supervised proxy tasks to provide generic 3D pre-trained models for medical image analysis.

Contributors

Agent

Created

Date Created
  • 2020