Matching Items (2)
Filtering by

Clear all filters

154558-Thumbnail Image.png
Description
Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear

Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear variation patterns using deep learning autoencoders is proposed. The approach provides a functional mapping from a low-dimensional representation to the original spatially-dense data that is both interpretable and efficient with respect to preserving information. Experimental results indicate that deep learning autoencoders outperform manifold learning and principal component analysis in reproducing the original data from the learned variation sources.

A key issue in using autoencoders for nonlinear variation pattern discovery is to encourage the learning of solutions where each feature represents a unique variation source, which we define as distinct features. This problem of learning distinct features is also referred to as disentangling factors of variation in the representation learning literature. The remainder of this dissertation highlights and provides solutions for this important problem.

An alternating autoencoder training method is presented and a new measure motivated by orthogonal loadings in linear models is proposed to quantify feature distinctness in the nonlinear models. Simulated point cloud data and handwritten digit images illustrate that standard training methods for autoencoders consistently mix the true variation sources in the learned low-dimensional representation, whereas the alternating method produces solutions with more distinct patterns.

Finally, a new regularization method for learning distinct nonlinear features using autoencoders is proposed. Motivated in-part by the properties of linear solutions, a series of learning constraints are implemented via regularization penalties during stochastic gradient descent training. These include the orthogonality of tangent vectors to the manifold, the correlation between learned features, and the distributions of the learned features. This regularized learning approach yields low-dimensional representations which can be better interpreted and used to identify the true sources of variation impacting a high-dimensional feature space. Experimental results demonstrate the effectiveness of this method for nonlinear variation pattern discovery on both simulated and real data sets.
ContributorsHoward, Phillip (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Mirchandani, Pitu (Committee member) / Apley, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
151443-Thumbnail Image.png
Description
The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology,

The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology, successfully validated in recent years on simpler panel structures, by developing a novel identification strategy of the reduced order model parameters, that enables the consideration of the large number of modes needed for complex structures, and by extending an automatic strategy for the selection of the basis functions used to represent accurately the displacement field. These novel developments are successfully validated on the nonlinear static and dynamic responses of a 9-bay panel structure modeled within Nastran. In addition, a multi-scale approach based on Component Mode Synthesis methods is explored. Second, an assessment of the predictive capabilities of nonlinear reduced order models for the prediction of the large displacement and stress fields of panels that have a geometric discontinuity; a flat panel with a notch was used for this assessment. It is demonstrated that the reduced order models of both virgin and notched panels provide a close match of the displacement field obtained from full finite element analyses of the notched panel for moderately large static and dynamic responses. In regards to stresses, it is found that the notched panel reduced order model leads to a close prediction of the stress distribution obtained on the notched panel as computed by the finite element model. Two enrichment techniques, based on superposition of the notch effects on the virgin panel stress field, are proposed to permit a close prediction of the stress distribution of the notched panel from the reduced order model of the virgin one. A very good prediction of the full finite element results is achieved with both enrichments for static and dynamic responses. Finally, computational challenges associated with the solution of the reduced order model equations are discussed. Two alternatives to reduce the computational time for the solution of these problems are explored.
ContributorsPerez, Ricardo Angel (Author) / Mignolet, Marc (Thesis advisor) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012