Matching Items (14)
Filtering by

Clear all filters

152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
150506-Thumbnail Image.png
Description
The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system.

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.
ContributorsKonduri, Karthik Charan (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kuby, Michael (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

ContributorsSrinivasan, Aswin Kumar Kumar (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose R. (Jose Roberto) (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156729-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier known as Reacted and Activated Rubber (RAR) is one such technology. RAR (industrially known as “RARX”) acts like an Enhanced Elastomeric Asphalt Extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objective of this research study was first to perform a Superpave mix design for determination of optimum asphalt content with 35% RAR by weight of binder; and secondly, analyse the performance of RAR modified mixtures prepared using the dry process against Crumb Rubber Modified (CRM) mixtures prepared using the wet process by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to fabricate RAR and CRM mixtures and Performance Grade (PG) 70-10 was used to fabricate Control mixtures for this study. Laboratory tests included: Dynamic Modulus Test, Flow Number Test, Tensile Strength Ratio, Axial Cyclic Fatigue Test and C* Fracture Test. Observations from test results indicated that RAR mixes prepared through the dry process had excellent fatigue life, moisture resistance and cracking resistance compared to the other mixtures.

ContributorsShah, Janak (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
153985-Thumbnail Image.png
Description
This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in the evolution and stability of congested traffic. At merges, drivers from conflicting traffic branches take turns to merge into a single stream at a rate referred to as the “merge ratio”. In this research, data from several freeway merges was used to evaluate existing macroscopic merge models and theoretical principles of merging behavior. Findings suggest that current merge ratio estimation methods can be insufficient to represent site-specific merge ratios, due to observed within-site variations and unaccounted effects of downstream merge geometry. To overcome these limitations, merge ratios were formulated based on their site-specific lane flow distribution (LFD), the proportion of flow in each freeway lane, for two types of merge geometries. Results demonstrate that the proposed methods are able to improve merge ratio estimates, reproduce within-site variations of merge ratio, and represent more effectively disproportionate redistribution of merging flow for merges where vehicles compete directly to merge due a downstream lane reduction.

Second, this research investigates lane-specific traffic behavior through empirical analysis and statistical modeling of lane flow distribution. Lane-specific traffic behavior is also an important component in evaluating freeway performance and has a significant impact in the mechanism of queue evolution, particularly around merges, and bottleneck discharge rate. In this research, site-specific linear LFD trends of three-lane congested freeways were investigated and modeled. A large-scale data collection process was implemented to systematically characterize the effects of several traffic and geometric features of freeways in the occurrence of between-site LFD variations. Also, an innovative three-stage modeling framework was used to model LFD behavior using multiple logistic regression to describe between-site LFD variations and Dirichlet regression to model recurrent combinations of linear LFD trends. This novel approach is able to represent both between and within site variations of LFD trends better, while accounting for the unit-sum constraint and distribution assumptions inherent of proportions data. Results revealed that proximity to freeway merges, a site’s level of congestion, and the presence of HOV lanes are significant factors that influence site-specific recurrent LFD behavior.

Findings from this work significantly improve the state-of-the-art knowledge on merging and lane-specific traffic behavior, which can help to improve traffic operations and reduce traffic congestion in freeways.
ContributorsReina, Paulina (Author) / Ahn, Soyoung (Thesis advisor) / Pendyala, Ram (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2015
154328-Thumbnail Image.png
Description

Crack sealing is considered one of the least expensive and cost effective maintenance activity used on pavements. In some cases, crack sealing suffers from premature failure due to various material, environmental, and construction issues. A survey that was conducted as part of this study showed that the highest sealant failure

Crack sealing is considered one of the least expensive and cost effective maintenance activity used on pavements. In some cases, crack sealing suffers from premature failure due to various material, environmental, and construction issues. A survey that was conducted as part of this study showed that the highest sealant failure year occurring on the second year. Therefore, any attempt to increase the sealants’ service life by addressing and improving the sealant properties and their resistance to failure will benefit the effectiveness of this treatment.

The goal behind this study was to evaluate the potential improvement in performance of hot applied sealant material commonly used in the Phoenix area, and evaluate the performance of using a neat binder modified with crumb rubber (at 5 and 10% by weight of binder) as a low-grade sealing material. The sealants was also modified with crumb rubber at 2.5, and 5% by weight fo the sealant. Six ASTM tests were conducted for the comparison. These tests are the Standard Penetration Test (SPT) and Cone Penetration Test (CPT), Resilience Test, Softening Point Test, Brookfield Viscometer Test, and Dynamic Shear Rheometer (DSR).

The results showed that adding only crumb rubber to a neat binder for its potential use as a crack sealant is inadequate to meet the specifications expected for sealants. However, the modification of the sealant with crumb rubber showed some benefits, such as increased elasticity and decreased temperature susceptibility. A crumb rubber content of 2.5% by weight of the sealant was recommended.

ContributorsThwaini, Talal (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Committee member) / Underwood, Benjamin (Committee member) / Arizona State University (Publisher)
Created2016
152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

ContributorsPaul, Sanjay (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2014
152749-Thumbnail Image.png
Description

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objectives of this research study were to evaluate the rheological and aging properties of binders modified with RuBindTM and its compatibility with warm mix technology. Two binders were used for this study: Performance Grade (PG) 70-10 and PG 64-22, both modified with 25% by weight of asphalt binder. Laboratory test included: penetration, softening point, viscosity, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Tests were conducted under original, short and long -term aging conditions. Observations from the test results indicated that there is a better improvement when RuBindTM is added to a softer binder, in this case a PG 64-22. For short-term aging, the modified binder showed a similar aging index compared to the control. However, long term aging was favorable for the modified binders. The DSR results showed that the PG 64-22 binder high temperature would increase to 82 °C, and PG 70-10 would be increased to 76 °C, both favorable results. The intermediate temperatures also showed an improvement in fatigue resistance (as measured by the Superpave PG grading parameter |G*|sinä). Test results at low temperatures did not show a substantial improvement, but the results were favorable showing reduced stiffness with the addition of RuBindTM. The evaluation of warm mix additive using EvothermTM confirmed the manufacturer information that the product should have no negative effects on the binder properties; that is the modified binder can be used in a warm mix process. These results were encouraging and the recommendation was to continue with a follow up study with mixture tests using the RuBindTM modified binders.

ContributorsMedina, Jose R. (Jose Roberto) (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
153001-Thumbnail Image.png
Description
Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding of factors for variations in bottleneck discharge rates. Specifically this research seeks to (i) develop a methodology comparable to the rigorous methods to identify bottlenecks and measure capacity drop and its temporal (day to day) variations in a region, (ii) understand the variations in discharge rate of a freeway weaving bottleneck with a HOV lane and (iii) understand the relationship between lane flow distribution and discharge rate on a weaving bottleneck resulted from a lane drop and a busy off-ramp. In this research, a methodology has been developed to de-noise raw data using Discrete Wavelet Transforms (DWT). The de-noised data is then used to precisely identify bottleneck activation and deactivation times, and measure pre-congestion and congestion flows using Continuous Wavelet Transforms (CWT). To this end a methodology which could be used efficiently to identify and analyze freeway bottlenecks in a region in a consistent, reproducible manner was developed. Using this methodology, 23 bottlenecks have been identified in the Phoenix metropolitan region, some of which result in long queues and large delays during rush-hour periods. A study of variations in discharge rate of a freeway weaving bottleneck with a HOV lane showed that the bottleneck discharge rate diminished by 3-25% upon queue formations, however, the discharge rate recovered shortly thereafter upon high-occupancy-vehicle (HOV) lane activation and HOV lane flow distribution (LFD) has a significant effect on the bottleneck discharge rate: the higher the HOV LFD, the lower the bottleneck discharge rate. The effect of lane flow distribution and its relationship with bottleneck discharge rate on a weaving bottleneck formed by a lane drop and a busy off-ramp was studied. The results showed that the bottleneck discharge rate and lane flow distribution are linearly related and higher utilization of the median lane results in higher bottleneck discharge rate.
ContributorsKandala, Srinivasa Srivatsav (Author) / Ahn, Soyoung (Thesis advisor) / Pendyala, Ram (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2014
153149-Thumbnail Image.png
Description

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations remain under-studied. As metropolitan planning organizations continue to improve their regional travel models by incorporating processes and parameters specific to major regional special generators, university population travel characteristics need to be measured and special submodels that capture their behavior need to be developed. The research presented herein begins by documenting the design and administration of a comprehensive university student online travel and mode use survey that was administered at Arizona State University (ASU) in the Greater Phoenix region of Arizona. The dissertation research offers a detailed statistical analysis of student travel behavior for different student market segments. A framework is then presented for incorporating university student travel into a regional travel demand model. The application of the framework to the ASU student population is documented in detail. A comprehensive university student submodel was estimated and calibrated for integration with the full regional travel model system. Finally, student attitudes toward travel are analyzed and used as explanatory factors in multinomial logit models of mode choice. This analysis presents an examination of the extent to which attitudes play a role in explaining mode choice behavior of university students in an urban setting. The research provides evidence that student travel patterns vary substantially from those of the rest of the population, and should therefore be considered separately when forecasting travel demand and formulating transport policy in areas where universities are major contributors to regional travel.

ContributorsVolosin, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Konduri, Karthik C (Committee member) / Arizona State University (Publisher)
Created2014