Matching Items (4)
Filtering by

Clear all filters

153629-Thumbnail Image.png
Description
The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of

The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of data, as well as the rate at which it is generated, also give rise to significant challenges. In particular, processing, modeling, and understanding the structure of online social networks is computationally difficult due to these challenges. The goal of this study is twofold: first to present a new networked data processing framework to model this social structure, and second to highlight the wireless networking gains possible by using this social structure.

The first part of the dissertation considers a new method for modeling social networks via probabilistic graphical models. Specifically, this new method employs the t-cherry junction tree, a recent advancement in probabilistic graphical models, to develop a compact representation and good approximation of an otherwise intractable probabilistic model. There are a number of advantages in this approach: 1) the best approximation possible via junction trees belongs to the class of t-cherry junction trees; 2) constructing a t-cherry junction tree can be largely parallelized; and 3) inference can be performed using distributed computation. To improve the quality of approximation, an algorithm to build a higher order tree gracefully from an existing one, without constructing it from scratch, is developed. this approach is applied to Twitter data containing 100,000 nodes to study the problem of recommending connections to new users.

Next, the t-cherry junction tree framework is extended by considering the impact of estimating the distributions involved from a training data set. Understanding this impact is vital to real-world applications as distributions are not known perfectly, but rather generated from training data. First, the fidelity of the t-cherry junction tree approximation due to this estimation is quantified. Then the scaling behavior, in terms of the size of the t-cherry junction tree, is approximated to show that higher-order t-cherry junction trees, which with perfect information are higher fidelity approximations, may actually result in decreased fidelity due to the difficulties in accurately estimating higher-dimensional distributions. Finally, this part concludes by demonstrating these findings by considering a distributed detection situation in which the sensors' measurements are correlated.

Having developed a framework to model social structure in online social networks, the study then highlights two approaches for utilizing this social network data in existing wireless communication networks. The first approach is a novel application: using social networks to enhance device-to-device wireless communication. It is well known that wireless communication can be significantly improved by utilizing relays to aid in transmission. Rather than deploying dedicated relays, a system is designed in which users can relay traffic for other users if there is a shared social trust between them, e.g., they are ``friends'' on Facebook, and for users that do not share social trust, implements a coalitional game framework to motivate users to relay traffic for each other. This framework guarantees that all users improve their throughput via relaying while ensuring that each user will function as a relay only if there is a social trust relationship or, if there is no social trust, a cycle of reciprocity is established in which a set of users will agree to relay for each other. This new system shows significant throughput gain in simulated networks that utilize real-world social network traces.

The second application of social structure to wireless communication is an approach to reduce the congestion in cellular networks during peak times. This is achieved by two means: preloading and offloading. Preloading refers to the process of using social network data to predict user demand and serve some users early, before the cellular network traffic peaks. Offloading allows users that have already obtained a copy of the content to opportunistically serve other users using device-to-device communication, thus eliminating the need for some cellular traffic. These two methods work especially well in tandem, as preloading creates a base of users that can serve later users via offloading. These two processes can greatly reduce the peak cellular traffic under ideal conditions, and in a more realistic situation, the impact of uncertainty in human mobility and the social network structure is analyzed. Even with the randomness inherent in these processes, both preloading and offloading offer substantial improvement. Finally, potential difficulties in preloading multiple pieces of content simultaneously are highlighted, and a heuristic method to solve these challenges is developed.
ContributorsProulx, Brian (Author) / Zhang, Junshan (Thesis advisor) / Cochran, Douglas (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154767-Thumbnail Image.png
Description
Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service providers from being attacked. This dissertation aims to uncover a number of challenging security and privacy issues in microblogging services and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social botnet, a group of collaborative social bots under the control of a single botmaster, demonstrate the effectiveness and advantages of exploiting a social botnet for spam distribution and digital-influence manipulation, and propose the corresponding countermeasures and evaluate their effectiveness. Inspired by Pagerank, the second part describes TrueTop, the first sybil-resilient system to find the top-K influential users in microblogging services with very accurate results and strong resilience to sybil attacks. TrueTop has been implemented to handle millions of nodes and 100 times more edges on commodity computers. The third and fourth part demonstrate that microblogging systems' structural openness and users' carelessness could disclose the later's sensitive information such as home city and age. LocInfer, a novel and lightweight system, is presented to uncover the majority of the users in any metropolitan area; the dissertation also proposes MAIF, a novel machine learning framework that leverages public content and interaction information in microblogging services to infer users' hidden ages. Finally, the dissertation proposes the first privacy-preserving social media publishing framework to let the microblogging service providers publish their data to any third-party without disclosing users' privacy and meanwhile meeting the data's commercial utilities. This dissertation sheds the light on the state-of-the-art security and privacy issues in the microblogging services.
ContributorsZhang, Jinxue (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2016
153986-Thumbnail Image.png
Description
The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every

The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every action people take online would leave a trail of information which could be recorded, collected and used by malicious attackers. Besides, service providers might collect users’ information and analyze them, which also leads to a privacy breach. Therefore, preserving people’s privacy is very important in the online environment.

In this dissertation, I study the problems of preserving people’s identity privacy and loca- tion privacy in the online environment. Specifically, I study four topics: identity privacy in online social networks (OSNs), identity privacy in anonymous message submission, lo- cation privacy in location based social networks (LBSNs), and location privacy in location based reminders. In the first topic, I propose a system which can hide users’ identity and data from untrusted storage site where the OSN provider puts users’ data. I also design a fine grained access control mechanism which prevents unauthorized users from accessing the data. Based on the secret sharing scheme, I construct a shuffle protocol that disconnects the relationship between members’ identities and their submitted messages in the topic of identity privacy in anonymous message submission. The message is encrypted on the mem- ber side and decrypted on the message collector side. The collector eventually gets all of the messages but does not know who submitted which message. In the third topic, I pro- pose a framework that hides users’ check-in information from the LBSN. Considering the limited computation resources on smart devices, I propose a delegatable pseudo random function to outsource computations to the much more powerful server while preserving privacy. I also implement efficient revocations. In the topic of location privacy in location based reminders, I propose a system to hide users’ reminder locations from an untrusted cloud server. I propose a cross based approach and an improved bar based approach, re- spectively, to represent a reminder area. The reminder location and reminder message are encrypted before uploading to the cloud server, which then can determine whether the dis- tance between the user’s current location and the reminder location is within the reminder distance without knowing anything about the user’s location information and the content of the reminder message.
ContributorsZhao, Xinxin (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
158513-Thumbnail Image.png
Description
This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame,

This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame, which consists of a fixed number of time slots. The size of the frame is determined by the upper-layer applications. Packets with deadlines arrive at the beginning of each frame and will be discarded if missing their deadlines, which are in the same frame. Each link of the network is associated with a quality of service constraint and an average transmit power constraint. For this system, a MaxWeight-type problem for which the solutions achieve the throughput optimality is formulated. Since the computational complexity of solving the MaxWeight-type problem with exhaustive search is exponential even for a single-link system, a greedy algorithm with complexity O(nlog(n)) is proposed, which is also throughput optimal.

The outpatient healthcare network is modeled as a discrete-time queueing network, in which patients receive diagnosis and treatment planning that involves collaboration between multiple service stations. For each patient, only the root (first) appointment can be scheduled as the following appointments evolve stochastically. The cyclic planing horizon is a week. The root appointment is optimized to maximize the proportion of patients that can complete their care by a class-dependent deadline. In the optimization algorithm, the sojourn time of patients in the healthcare network is approximated with a doubly-stochastic phase-type distribution. To address the computational intractability, a mean-field model with convergence guarantees is proposed. A linear programming-based policy improvement framework is developed, which can approximately solve the original large-scale stochastic optimization in queueing networks of realistic sizes.
ContributorsLiu, Yiqiu (Author) / Ying, Lei (Thesis advisor) / Shi, Pengyi (Committee member) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020