Matching Items (3)
Filtering by

Clear all filters

150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
153207-Thumbnail Image.png
Description
Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.
ContributorsRajivan, Prashanth (Author) / Cooke, Nancy J. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2014