Matching Items (2)
Filtering by

Clear all filters

150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
155951-Thumbnail Image.png
Description
Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This

Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform data analytics. The functionalities of the application include offline lecture storage, live recording of classes, content analysis and reference generation. The knowledge base of videos is constructed by analyzing the offline data using machine learning techniques. This training dataset provides knowledge to construct the index of an online stream. The indexed metadata enables the students to search, view and access the relevant content. The performance of the application is benchmarked in different use cases to demonstrate the benefits of the hybrid model.
ContributorsNAGENDRA, SHILPA (Author) / Huang, Dijiang (Thesis advisor) / Zhao, Ming (Committee member) / Maciejewski, Ross (Committee member) / Chung, Chun-Jen (Committee member) / Arizona State University (Publisher)
Created2017