Matching Items (6)
Filtering by

Clear all filters

153522-Thumbnail Image.png
Description
The shape of glucose response and one hour (1-hr) glucose during an oral glucose tolerance test (OGTT) are emerging biomarkers for type 2 diabetes. The purpose of this study was two-fold: (1) to investigate the utility of these novel biomakers to differentiate type 2 diabetes risk in Latino youth, and

The shape of glucose response and one hour (1-hr) glucose during an oral glucose tolerance test (OGTT) are emerging biomarkers for type 2 diabetes. The purpose of this study was two-fold: (1) to investigate the utility of these novel biomakers to differentiate type 2 diabetes risk in Latino youth, and (2) to examine the genetic determinants in a Latino population.

Data from the ASU Arizona Insulin Registry (AIR) registry and the USC Study of Latino Adolescents at Risk for diabetes project were used to test the cross-sectional and prospective utility of novel biomarkers to identify youth at risk for type 2 diabetes. Pediatric and adult data from the ASU AIR registry were assessed to examine the association of single nucleotide polymorphisms (SNPs) with type 2 diabetes risk. Three KCNQ1 SNPs (rs151290; rs2237892; rs2237895) were examined as novel genetic variants for type 2 diabetes in Latinos.

Latino youth with a biphasic response in the AIR registry exhibited significantly better β-cell function (P < 0.05) compared to youth with a monophasic response. Additionally, Latino youth with a 1-hr glucose ≥155 mg/dL exhibited a significantly greater decline in β-cell function over 8 years compared with the <155 mg/dL group (β=-327.8±126.2, P = 0.01). Moreover, a 1-hr glucose ≥155 mg/dL was associated with a 2.5 times greater risk for developing prediabetes over time (P = 0.0001). 1-hr glucose was the most powerful predictor of prediabetes (area under the receiver operating characteristic curve=0.73) when compared to the traditional biomarkers including HbA1c (0.58), fasting (0.67), and 2-hr glucose (0.64). Two KCNQ1 SNPs (rs151290 and rs2237892) exhibited significant associations with type 2 diabetes risk factors. For the novel glycemic markers, 15 SNPs were associated with the glucose response curve, while 18 SNPs were associated with 1-hr glucose.

These data suggest that glucose response curve and 1-hr glucose during an OGTT independently differentiate type 2 diabetes risk among Latino youth. Furthermore, it was successful to replicate the association of type 2 diabetes risk with 2 KCNQ1 SNPs in a Latino population. Data suggest that novel glycemic biomarkers are influenced by genetic background in this high-risk population.
ContributorsKim, Joon Young (Author) / Shaibi, Gabriel Q (Thesis advisor) / Mandarino, Lawrence J (Committee member) / Coletta, Dawn K (Committee member) / De Filippis, Elena A (Committee member) / Arizona State University (Publisher)
Created2015
156037-Thumbnail Image.png
Description
Background. Effects of lifestyle interventions on early biomarkers of oxidative stress and CVD risk in youth with prediabetes are unknown. Objective. To evaluate the effects of a lifestyle intervention to prevent type 2 diabetes among obese prediabetic Latino adolescents on oxidized lipoproteins. Design: In a quasi-experimental design, 35 adolescents (51.4%

Background. Effects of lifestyle interventions on early biomarkers of oxidative stress and CVD risk in youth with prediabetes are unknown. Objective. To evaluate the effects of a lifestyle intervention to prevent type 2 diabetes among obese prediabetic Latino adolescents on oxidized lipoproteins. Design: In a quasi-experimental design, 35 adolescents (51.4% male, age 15.5(1.0) y, body mass index (BMI) percentile 98.5(1.2), and glucose 2 hours after an oral glucose tolerance test-OGTT 141.2(12.2) mg/dL) participated in a 12-week intervention that included weekly exercise (three 60 min-sessions) and nutrition education (one 60 min-session). Outcomes measured at baseline and post-intervention were: fasting oxidized LDL and oxidized HDL (oxLDL and oxHDL) as oxidative stress variables; dietary intake of fresh fruit and vegetable (F&V) and fitness (VO2max) as behavioral variables; weight, BMI, body fat, and waist circumference as anthropometric variables; fasting glucose and insulin, 2hour glucose and insulin after an OGTT, insulin resistance (HOMA-IR), and lipid panel (triglycerides, total cholesterol, VLDL-c, LDL-c, HDL-c, and Non-HDL) as cardiometabolic variables. Results. Comparing baseline to post-intervention, significant decreases in oxLDL concentration were shown (51.0(14.0) and 48.7(12.8) U/L, p=0.022); however, the intervention did not decrease oxHDL (395.2(94.6) and 416.1(98.4) ng/mL, p=0.944). F&V dietary intake (116.4(97.0) and 165.8(91.0) g/d, p=0.025) and VO2max (29.7(5.0) and 31.6(4.7) ml*kg-1*min-1, p<0.001) significantly increased. Within-subjects correlations between changes in F&V intake and oxidized lipoproteins, adjusted for VO2max changes, were non-significant (R=-0.15, p=0.52 for oxLDL; R=0.22, p=0.25 for oxHDL). Anthropometric variables were significantly reduced (weight -1.3% p=0.042; BMI -2.2% and BMI percentile -0.4%, p=0.001; body fat -6.6% and waist circumference -1.8%, p=0.025). Cardiometabolic variables significantly improved, including reductions in glucose 2hour (-19.3% p<0.001), fasting insulin (-12.9% p=0.008), insulin 2hour (-53.5% p<0.001), and HOMA-IR (-12.5% p=0.015), with 23 participants (66%) that reverted toward a normal glucose tolerance status. Most lipid panel significantly changed (triglycerides -10.2% p=0.032; total cholesterol -5.4% p=0.002; VLDL-c -10.4% p=0.029; HDL-c -3.2% p=0.022; and Non-HDL -5.5% p=0.0007). Conclusion. The intervention resulted in differential effects on oxidized lipoproteins and significant improvements in behavioral, anthropometric and cardiometabolic variables, reducing the high metabolic risk of obese prediabetic kids.
ContributorsRenteria Mexia, Ana Maria (Author) / Shaibi, Gabriel Q (Thesis advisor) / Vega-Lopez, Sonia (Committee member) / Swan, Pamela D (Committee member) / Olson, Micah L (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2017
157231-Thumbnail Image.png
Description
Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is still lacking. In order to identify protein and glycan antigen

Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is still lacking. In order to identify protein and glycan antigen biomarkers of infection, I used a combination of genomics, proteomics and glycomics analyses to provide evidence of genus-specific proteins and glycosylations. The next goal was to determine if Coccidioides-specific glycans were present in biological samples from VF patients. Urine collected from 77 humans and 63 dogs were enriched for glycans and evaluated by mass spectrometry for Coccidioides-specific glycans and evaluated against a panel of normal donor urines, urines from patients infected with other fungi, and fungal cultures from closely related pneumonia-causing fungi. A combination of 6 glycan biomarkers was 100% sensitive and 100% specific in the diagnosis of human VF subjects, while only 3 glycan biomarkers were needed for 100% sensitivity and 100 specificity in the diagnosis of dog VF subject. Additionally, a blinded trial of 23 human urine samples was correctly able to classify urine samples with 93.3% sensitivity and 100% specificity. The results of this research provides evidence that Coccidioides genus-specific glycosylations have potential as antigens in diagnostic assays.
ContributorsMitchell, Natalie M (Author) / Lake, Douglas F (Thesis advisor) / Bean, Heather D (Committee member) / Grys, Thomas E (Committee member) / Magee, Dewey M (Committee member) / Arizona State University (Publisher)
Created2019
155443-Thumbnail Image.png
Description
Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to

Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to evaluate the relationship between objectively measured physical activity and sedentary behaviors and cardiometabolic biomarkers in middle age adults, while also determining if sleep quality and duration mediates this relationship. A group of inactive participants (N = 29, age = 52.1 ± 8.1 years, 38% female) with increased risk for cardiometabolic disease were recruited to participate in BeWell24, a trial testing the impact of a lifestyle-based, multicomponent smartphone application targeting sleep, sedentary, and more active behaviors. During baseline, interim (4 weeks), and posttest visits (8 weeks), biomarker measurements were collected for weight (kg), waist circumference (cm), glucose (mg/dl), insulin (uU/ml), lipids (mg/dl), diastolic and systolic blood pressures (mm Hg), and C reactive protein (mg/L). Participants wore validated wrist and thigh sensors for one week intervals at each time point to measure sedentary behavior, physical activity, and sleep outcomes. Long bouts of sitting time (>30 min) significantly affected triglycerides (beta = .15 (±.07), p<.03); however, no significant mediation effects for sleep quality or duration were present. No other direct effects were observed between physical activity measurements and cardiometabolic biomarkers. The findings of this study suggest that reductions in long bouts of sitting time may support reductions in triglycerides, yet these effects were not mediated by sleep-related improvements.
ContributorsLanich, Boyd (Author) / Buman, Matthew (Thesis advisor) / Ainsworth, Barbara (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017
154028-Thumbnail Image.png
Description
In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed with the highly aggressive triple-negative breast cancer (TNBC) subtype. Even within the TNBC subtype, AA women have a worse clinical outcome compared to CA. Although multiple socio-economic and lifestyle factors may contribute to these observed health disparities, it is essential that the underlying biological differences between CA and AA TNBC are identified. In this study, gene expression profiling was performed on archived FFPE samples, obtained from CA and AA women diagnosed with early stage TNBC. Initial analysis revealed a pattern of differential expression in the AA cohort compared to CA. Further molecular characterization results showed that the AA cohort segregated into 3-TNBC molecular subtypes; Basal-like (BL2), Immunomodulatory (IM) and Mesenchymal (M). Gene expression analyses resulted in 190 differentially expressed genes between the AA and CA cohorts. Pathway enrichment analysis demonstrated that differentially expressed genes were over-represented in cytoskeletal remodeling, cell adhesion, tight junctions, and immune response in the AA TNBC -cohort. Furthermore, genes in the Wnt/β-catenin pathway were over-expressed. These results were validated using RT-qPCR on an independent cohort of FFPE samples from AA and CA women with early stage TNBC, and identified Caveolin-1 (CAV1) as being significantly expressed in the AA-TNBC cohort. Furthermore, CAV1 was shown to be highly expressed in a cell line panel of TNBC, in particular, those of the mesenchymal and basal-like molecular subtype. Finally, silencing of CAV1 expression by siRNA resulted in a significant decrease in proliferation in each of the TNBC cell lines. These observations suggest that CAV1 expression may contribute to the more aggressive phenotype observed in AA women diagnosed with TNBC.
ContributorsGetz, Julie (Author) / Baumbach-Reardon, Lisa L (Thesis advisor) / Lake, Douglas F (Thesis advisor) / Bussey, Kimberly (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2015
153561-Thumbnail Image.png
Description
Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to serve as early detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung adenocarcinoma. First, a method was developed to display proteins in both native and denatured conformation on protein array. This method adopted a novel protein tag technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The covalent attachment allowed these proteins to endure harsh treatment without getting dissociated from slide surface, which enabled the profiling of antibody responses against both conformational and linear epitopes. Next, a plasma screening protocol was optimized to significantly increase signal to noise ratio of protein array based AAb detection. Following this, the AAb responses in basal-like breast cancer were explored using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length human proteins in 45 cases and 45 controls. After verification in a large sample set (145 basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 13-AAb classifier was developed to differentiate patients from controls with a sensitivity of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to identify AAbs that distinguished lung cancer patients from computed-tomography positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 benign controls). In this study, two panels of AAbs were discovered that showed promising sensitivity and specificity. Six out of eight AAb targets were also found to have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These projects as a whole provide novel insights on the association between AAbs and cancer, as well as general B cell antigenicity against self-proteins.
ContributorsWang, Jie (Author) / LaBaer, Joshua (Thesis advisor) / Anderson, Karen S (Committee member) / Lake, Douglas F (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015