Matching Items (2)
Filtering by

Clear all filters

154138-Thumbnail Image.png
Description
Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and

Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and out of states of schedule control, making it unclear whether motivation directly affects states related to timing. The present paper seeks to advance our understanding of timing performance by analyzing and comparing the distribution of latencies and inter-response times (IRTs) of rats in two fixed-interval (FI) schedules of food reinforcement (FI 30-s and FI 90-s), and in two levels of food deprivation. Computational modeling revealed that each component was well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies are sensitive to the periodicity of reinforcement, and pre-feeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Pre-feeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, these models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance, which need to be accounted for by causal theories of interval timing.
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / Brewer, Gene (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2015
157225-Thumbnail Image.png
Description
The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For

The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For IR, rats were restrained for 2 or 6hrs/day (IR2, IR6, respectively) for five days and then given two days off, a process that was repeated for three weeks and compared to rats restrained for 6hrs/d for each day (DR6) and non-stressed controls (CON). Spatial memory was tested on the radial arm water maze (RAWM), object placement (OP), novel object recognition (NOR) and Y-maze. The results for the first two experiments revealed that IR6, but not IR2, was effective in impairing spatial memory in male rats and that task order impacted performance. In experiment 3, an extended IR paradigm for six weeks was implemented before spatial memory testing commenced in male and female rats (IR- M, IR-F). Unexpectedly, an extended IR paradigm failed to impair spatial memory in either males or females, suggesting that when extended, the IR paradigm may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not females, and that females appear to be resilient to spatial memory deficits in the face of chronic stress.
ContributorsPeay, Dylan (Author) / Conrad, Cheryl D. (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2019