Matching Items (2)
Filtering by

Clear all filters

149953-Thumbnail Image.png
Description
The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, the original problem can be approximated via the sum of a series of simple functions with closed form solutions. A preconditioner for solving the block Toeplitz with Toeplitz block (BTTB) linear system is proposed to accelerate the computation. An in-depth discussion on the rate of convergence and the optimal parameter selection criteria is given. Numerical experiments are used to test the performance and the robustness of the proposed algorithm to a wide range of parameter values. Applications of the algorithm in magnetic resonance (MR) imaging and a comparison with other existing methods are included. The second part of this work is the application of the TV-$\ell_1$ model in source localization using sensor arrays. The array output is reformulated into a sparse waveform via an over-complete basis and study the $\ell_p$-norm properties in detecting the sparsity. An algorithm is proposed for minimizing a non-convex problem. According to the results of numerical experiments, the proposed algorithm with the aid of the $\ell_p$-norm can resolve closely distributed sources with higher accuracy than other existing methods.
ContributorsShen, Wei (Author) / Mittlemann, Hans D (Thesis advisor) / Renaut, Rosemary A. (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Gelb, Anne (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2011
153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015