Matching Items (3)
Filtering by

Clear all filters

149905-Thumbnail Image.png
Description
Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea

Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea of schools as community centers has not entered the mainstream of urban planning thought or practice. As the community schools movement continues to grow, planners should be engaged to support and leverage community school developments using their unique role as mediators of public and private interests. Furthermore, planners tend to have a broad perspective of communities that can facilitate synergistic partnerships and development patterns beyond the immediate school site. The aim of this research was to reframe the existing literature on community schools into a unified School-Oriented Development (SOD) neighborhood planning paradigm that 1) proposes a typology based on the relationships between schools and their surrounding communities, and 2) suggests urban form guidelines that will support these relationships in a child-friendly environment. These outcomes were achieved through the creation of a prototype SOD SmartCode Module that incorporates an SOD typology.
ContributorsReid, Carolyn (Author) / Talen, Emily (Thesis advisor) / Dornfeld, Leslie (Committee member) / Stein, Jay (Committee member) / Arizona State University (Publisher)
Created2011
153692-Thumbnail Image.png
Description
Energy performance and efficiency plays of major role in the operations of K-12 schools, as it is a significant expense and a source of budgetary pressure upon schools. Energy performance is tied to the physical infrastructure of schools, as well as the operational and behavioral patterns they accommodate. Little documentation

Energy performance and efficiency plays of major role in the operations of K-12 schools, as it is a significant expense and a source of budgetary pressure upon schools. Energy performance is tied to the physical infrastructure of schools, as well as the operational and behavioral patterns they accommodate. Little documentation exists within the existing literature on the measured post-occupancy performance of schools once they have begun measuring and tracking their energy performance. Further, little is known about the patterns of change over time in regard to energy performance and whether there is differentiation in these patterns between school districts.

This paper examines the annual Energy Use Intensity (EUI) of 28 different K-12 schools within the Phoenix Metropolitan Region of Arizona over the span of five years and presents an analysis of changes in energy performance resulting from the measurement of energy use in K-12 schools. This paper also analyzes the patterns of change in energy use over time and provides a comparison of these patterns by school district.

An analysis of the energy performance data for the selected schools revealed a significant positive impact on the ability for schools to improve their energy performance through ongoing performance measurement. However, while schools tend to be able to make energy improvements through the implementation of energy measurement and performance tracking, deviation may exist in their ability to maintain ongoing energy performance over time. The results suggest that implementation of ongoing measurement is likely to produce positive impacts on the energy performance of schools, however further research is recommended to enhance and refine these results.
ContributorsThurston, Anna (Author) / Sullivan, Kenneth (Thesis advisor) / Okamura, Patrick (Committee member) / Slife, Curtis (Committee member) / Arizona State University (Publisher)
Created2015
155073-Thumbnail Image.png
Description
Research has shown roofing systems with high solar reflectance and thermal emissivity lead to less heat absorption, a consequential reduction in cooling load demand, and a resultant reduction on energy expenditure. Studies on energy savings from cool roof coatings have been conducted for decades and when compared to more traditional

Research has shown roofing systems with high solar reflectance and thermal emissivity lead to less heat absorption, a consequential reduction in cooling load demand, and a resultant reduction on energy expenditure. Studies on energy savings from cool roof coatings have been conducted for decades and when compared to more traditional roofing systems have demonstrated energy savings ranging from 2-40%, with average savings estimated at 20%. The 20% average is widely used by cool roof industry professionals, designers, and contractors to market and sell the technology in the commercial sector to owners and owner representatives researching new roofs. While the 20% energy savings is a documented average, unfortunately there is no average roof. Each roof is unique considering size, materials, and location to name a few. In addition, the ability of the cool roof to maintain the original solar reflectance is integral to realizing energy savings. The case study calculated project payback for a 20-year cool roof design using both 30% and 20% estimated annual energy savings. In addition, building material specifications and solar reflectance attenuation in respect to reductions in cooling energy were projected into the payback calculations. Lastly, the cost impact of cleaning maintenance was added to the calculations to provide an analysis on affect to anticipated payback schedules. The results showed cleaning costs only added 1 year to project paybacks and saved over 262,244 kWh over 20 years.
ContributorsHaverstic, Preston (Author) / Sullivan, Kenneth (Thesis advisor) / Okamura, Patrick (Committee member) / Slife, Curtis (Committee member) / Arizona State University (Publisher)
Created2016