Matching Items (3)
Filtering by

Clear all filters

152445-Thumbnail Image.png
Description
Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain.

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing tumor cytoreduction during surgery. Chapter 2 of this dissertation describes a gene and protein we identified; aquaporin-1 (aqp1) that enhances infiltration of GBM. In chapter 3, we describe a method for enhancing the diagnostic yield of GBM patient biopsies which will assist in identifying future molecular targets for GBM therapies. In chapter 4 we develop an intraoperative optical imaging technique that will assist identifying GBM and its infiltrative margins during surgical resection. The topic of this dissertation aims to target glioblastoma infiltration from molecular and cellular biology and neurosurgical disciplines. In the introduction we; 1. Provide a background of GBM and current therapies. 2. Discuss a protein we found that decreases GBM survival. 3. Describe an imaging modality we utilized for improving the quality of accrued patient GBM samples. 4. We provide an overview of intraoperative contrast agents available for neurosurgical resection of GBM, and discuss a new agent we studied for intraoperative visualization of GBM.
ContributorsGeorges, Joseph F (Author) / Feuerstein, Burt G (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Van Keuren-Jensen, Kendall (Committee member) / Deviche, Pierre (Committee member) / Bennett, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
155762-Thumbnail Image.png
Description
Schizophrenia is considered a multifactorial disorder with complex genetic variants in response to environmental stimuli. However, the specific genetic contribution to schizophrenia risk is largely unknown. The transcription factor early growth response gene 3 (EGR3) can be activated rapidly after stimuli and thus may translate environmental stimuli into gene changes

Schizophrenia is considered a multifactorial disorder with complex genetic variants in response to environmental stimuli. However, the specific genetic contribution to schizophrenia risk is largely unknown. The transcription factor early growth response gene 3 (EGR3) can be activated rapidly after stimuli and thus may translate environmental stimuli into gene changes that influence schizophrenia risk. However, the downstream genes that may be regulated by EGR3 are not clear. While the 5-Hydroxytryptamine receptor 2A (5HT2AR) - encoding gene Htr2a has been implicated in the etiology of schizophrenia, the mechanisms by which Htr2a influences susceptibility to this illness are poorly understood. We previously found that in addition to schizophrenia-like abnormalities, Egr3 -/- mice have approximately 70% deduction of 5HT2AR level in the prefrontal cortex, which underlines their resistant to the sedating effect of clozapine. These findings indicate that the two schizophrenia candidate genes are in the same biological pathway that integrates multiple components resulting in schizophrenia. This dissertation is aimed to identify the mechanisms by which Egr3 regulates the expression of Htr2a in response to environmental stimuli like stress.

To determine if Egr3 alters Htr2a transcription under stress, I examined messenger ribonucleic acid (mRNA) levels of these two genes in wildtype (WT) and Egr3 -/- mice after 6hrs of sleep deprivation (SD). I found both genes are increased in WT mice after SD compared with controls. In addition, Egr3 is required for Htr2a induction because SD fails to induce Htr2a expression in Egr3 -/- mice. Next, I performed chromatin immunoprecipitation (ChIP) to determine if EGR3 binds to Htr2a promoter in vivo. I found a significant increase of EGR3 binding to Htr2a distal promoter 2hrs after seizure. To determine the functionality of this binding, I co-transfected the CMV- EGR3 vector or CMV- vector alone with the Htr2a distal promoter reporter clone. I found overexpression of EGR3 activates the Htr2a distal promoter-driven luciferase gene. Although the ChIP assay shows no direct binding of EGR3 to Htr2a proximal promoter, I found EGR3 overexpression activates Htr2a proximal promoter-driven luciferase gene. These findings suggest that EGR3 regulates Htr2a probably through both direct and indirect ways.
ContributorsZhao, Xiuli (Author) / Gallitano, Amelia (Thesis advisor) / Van Keuren-Jensen, Kendall (Committee member) / Lifshitz, Jonathan (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2017
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021