Matching Items (22)
Filtering by

Clear all filters

158383-Thumbnail Image.png
Description
Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability

Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability of the probe and its ability to acquire stable neural recordings in chronic studies. It has long been thought the membrane potential (MP) changes due to micromotion in the presence of brain implants were an artefact caused by the implant. Here is shown that intracellular membrane potential changes are a consequence of the activation of mechanosensitive ion channels at the neural interface. A combination of aplysia and rat animal models were used to show activation of mechanosensitive ion channels is occurring during a neural recording. During simulated micromotion of displacements of 50μm and 100μm at a frequency of 1 Hz, showed a change of 8 and 10mV respectively and that the addition of Ethylenediaminetetraacetic acid (EDTA) inhibited the membrane potential changes. The application of EDTA showed a 71% decrease in changes in membrane potential changes due to micromotion. Simulation of breathing using periodic motion of a probe in an Aplysia model showed that there were no membrane potential changes for <1.5kPa and action potentials were observed at >3.1kPa. Drug studies utilizing 5-HT showed an 80% reduction in membrane potentials. To validate the electrophysiological changes due to micromotion in a rat model, a double barrel pipette for simultaneous recording and drug delivery was designed, the drug delivery tip was recessed from the recording tip no greater than 50μm on average. The double barrel pipette using iontophoresis was used to deliver 30 μM of Gadolinium Chloride (Gd3+) into the microenvironment of the cell. Here is shown a significant reduction in membrane potential for n = 13 cells across 4 different rats tested using Gd3+. Membrane potential changes related to breathing and vascular pulsation were reduced between approximately 0.25-2.5 mV for both breathing and heart rate after the addition of Gd3+, a known mechanosensitive ion channel blocker.
ContributorsDuncan, Jonathan Leroy (Author) / Muthuswamy, Jitendran (Thesis advisor) / Greger, Bradley (Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2020
156810-Thumbnail Image.png
Description
Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated

Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.

The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.

In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications.
ContributorsOswalt, Denise (Author) / Greger, Bradley (Thesis advisor) / Buneo, Christopher (Committee member) / Helms-Tillery, Stephen (Committee member) / Mirzadeh, Zaman (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2018