Matching Items (18)
Filtering by

Clear all filters

149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152400-Thumbnail Image.png
Description
Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.
ContributorsAnand, Sindhu (Author) / Muthuswamy, Jitendran (Thesis advisor) / Tillery, Stephen H (Committee member) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
171979-Thumbnail Image.png
Description
Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so

Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so far as to use neuronal cultures as computing hardware, but utilizing an environment closer to a living brain means having to grapple with the same issues faced by clinicians and researchers trying to treat brain disorders. Most outstanding among these are the problems that arise with invasive interfaces. Optical techniques that use fluorescent dyes and proteins have emerged as a solution for noninvasive imaging with single-cell resolution in vitro and in vivo, but feeding in information in the form of neuromodulation still requires implanted electrodes. The implantation process of these electrodes damages nearby neurons and their connections, causes hemorrhaging, and leads to scarring and gliosis that diminish efficacy. Here, a new approach for noninvasive neuromodulation with high spatial precision is described. It makes use of a combination of ultrasound, high frequency acoustic energy that can be focused to submillimeter regions at significant depths, and electric fields, an effective tool for neuromodulation that lacks spatial precision when used in a noninvasive manner. The hypothesis is that, when combined in a specific manner, these will lead to nonlinear effects at neuronal membranes that cause cells only in the region of overlap to be stimulated. Computational modeling confirmed this combination to be uniquely stimulating, contingent on certain physical effects of ultrasound on cell membranes. Subsequent in vitro experiments led to inconclusive results, however, leaving the door open for future experimentation with modified configurations and approaches. The specific combination explored here is also not the only untested technique that may achieve a similar goal.
ContributorsNester, Elliot (Author) / Wang, Yalin (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2022
171998-Thumbnail Image.png
Description
For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical

For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical of penetrating electrodes. Additionally, subthreshold stimulation through subdural grids is a stable source for detecting eloquent cortex surrounding potential epileptic tissue. Researchers have each tried introducing microelectrodes to increase the spatial resolution but ran into connectivity challenges as the desired surface area increased. Meanwhile, clinical hybrid options have shown promise by combining multiple electrode sizes, maintaining surface area coverage with an increased spatial resolution where necessary. However, a benchtop method to quantify spatial resolution or test signal summation, without the complexity of an in vivo study, has not been found in the literature; a subdural grid in gel solution has functioned previously but without a published method. Thus, a novel hybrid electrode array with a telescopic configuration including three electrode geometries, called the M$^3$ array, is proposed to maintain cortical surface area coverage and provide spatial clarity in regions of interest using precision microfabrication techniques. Electrophysiological recording with this array should enhance the clinical signal portfolio without changing how clinicians interface with the broad surface data from macros. Additionally, this would provide a source for simultaneous recording and stimulation from the same location due to the telescopic nature of the design. A novel benchtop test method should remove complexity from in vivo tests while allowing direct comparison of recording capabilities of different cortical surface electrodes. Implementing the proposed M$^3$ electrode array in intracranial monitoring improves the current technology without much compromise, enhancing patient outcomes, reducing risks, and encouraging swift clinical translation.
ContributorsGarich, Jonathan Von (Author) / Blain Christen, Jennifer M (Thesis advisor) / Abbas, James J (Committee member) / Helms Tillery, Stephen I (Committee member) / Muthuswamy, Jitendran (Committee member) / Raupp, Gregory B (Committee member) / Arizona State University (Publisher)
Created2022
171934-Thumbnail Image.png
Description
Safety and efficacy of neuromodulation are influenced by abiotic factors like failure of implants, biotic factors like tissue damage, and molecular and cellular mechanisms of neuromodulation. Accelerated lifetime test (ALT) predict lifetime of implants by accelerating failure modes in controlled bench-top conditions. Current ALT models do not capture failure modes

Safety and efficacy of neuromodulation are influenced by abiotic factors like failure of implants, biotic factors like tissue damage, and molecular and cellular mechanisms of neuromodulation. Accelerated lifetime test (ALT) predict lifetime of implants by accelerating failure modes in controlled bench-top conditions. Current ALT models do not capture failure modes involving biological mechanisms. First part of this dissertation is focused on developing ALTs for predicting failure of chronically implanted tungsten stimulation electrodes. Three factors used in ALT are temperature, H2O2 concentration, and amount of charge delivered through electrode to develop a predictive model of lifetime for stimulation electrodes. Second part of this dissertation is focused on developing a novel method for evaluating tissue response to implants and electrical stimulation. Current methods to evaluate tissue damage in the brain require invasive and terminal procedures that have poor clinical translation. I report a novel non-invasive method that sampled peripheral blood monocytes (PBMCs) and used enzyme-linked immunoassay (ELISA) to assess level of glial fibrillary acidic protein (GFAP) expression and fluorescence-activated cell sorting (FACS) to quantify number of GFAP expressing PBMCs. Using this method, I was able to detect and quantify GFAP expression in PBMCs. However, there was no statistically significant difference in GFAP expression between stimulatory and non-stimulatory implants. Final part of this dissertation assessed molecular and cellular mechanisms of non-invasive ultrasound neuromodulation approach. Unlike electrical stimulation, cellular mechanisms of ultrasound-based neuromodulation are not fully known. Final part of this dissertation assessed role of mechanosensitive ion channels and neuronal nitric oxide production in cell cultures under ultrasound excitation. I used fluorescent imaging to quantify expression of nitric oxide in neuronal cell cultures in response to ultrasound stimulation. Results from these experiments indicate that neuronal nitric oxide production increased in response to ultrasound stimulation compared to control and decreased when mechanosensitive ion channels were suppressed. Two novel methods developed in this dissertation enable assessment of lifetime and safety of neuromodulation techniques that use electrical stimulation through implants. The final part of this dissertation concludes that non-invasive ultrasound neuromodulation may be mediated through neuronal nitric oxide even in absence of activation of mechanosensitive ion channels.
ContributorsVoziyanov, Vladislav (Author) / Muthuswamy, Jitendran (Thesis advisor) / Smith, Barbara (Committee member) / Greger, Bradley (Committee member) / Abbas, James (Committee member) / Okandan, Murat (Committee member) / Arizona State University (Publisher)
Created2022
191022-Thumbnail Image.png
Description
The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose

The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose of neural modulation. These ultrasonic forces are created in dielectric materials such as cell membranes by the electrostrive effect, providing a potential new neurotherapeutic technique. The ability for this technique to provide neurostimulatory effects was investigated using in vitro studies of neuronal cultures and in vivo studies on sciatic nerves. Direct exposure of E18 rat cortical neurons to these EM radiations demonstrated changes in cellular membrane potential, suggesting effects could be potentially similar to direct electrical stimulation. An exploration of neuromodulatory effects to rat sciatic nerves indicates exposure produces changes to peak-to-peak muscular response. These findings suggest promising results for this new potential neuromodulation modality.
ContributorsDagher, Michael Jonathan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Towe, Bruce (Committee member) / Sridharan, Arati (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2023
191704-Thumbnail Image.png
Description
Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of

Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of neural signals has been the gold standard for clinicians in diagnosing and treating neurological disorders. However, advances in detection and stimulation techniques have paved the way for relevant information not seen by standard procedures to be captured and used in patient treatment. Amongst these advances have been improved analysis of higher frequency activity and the increased concentration of alternative biomarkers, specifically pH change, during states of increased neural activity. The design and fabrication of devices with the ability to reliably interface with the brain on multiple scales and modalities has been a significant challenge. This dissertation introduces a novel, concentric, multi-scale micro-ECoG array for neural applications specifically designed for seizure detection in epileptic patients. This work investigates simultaneous detection and recording of adjacent neural tissue using electrodes of different sizes during neural events. Signal fidelity from electrodes of different sizes during in vivo experimentation are explored and analyzed to highlight the advantages and disadvantages of using varying electrode sizes. Furthermore, the novel multi-scale array was modified to perform multi-analyte detection experiments of pH change and electrophysiological activity on the cortical surface during epileptic events. This device highlights the ability to accurately monitor relevant information from multiple electrode sizes and concurrently monitor multiple biomarkers during clinical periods in one procedure that typically requires multiple surgeries.
ContributorsAkamine, Ian (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, Jimmy (Committee member) / Muthuswamy, Jitendran (Committee member) / Goryll, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2024
157380-Thumbnail Image.png
Description
A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced

A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in fMRI. Furthermore, the correlation between neural activity and the hemodynamic response is not fully understood. fMRI can only be considered an indirect method of functional brain imaging.

Another MR-based method of functional brain mapping is neuronal current magnetic resonance imaging (ncMRI), which has been studied over several years. However, the amplitude of these neuronal current signals is an order of magnitude smaller than the physiological noise. Works on ncMRI include simulation, phantom experiments, and studies in tissue including isolated ganglia, optic nerves, and human brains. However, ncMRI development has been hampered due to the extremely small signal amplitude, as well as the presence of confounding signals from hemodynamic changes and other physiological noise.

Magnetic Resonance Electrical Impedance Tomography (MREIT) methods could have the potential for the detection of neuronal activity. In this technique, small external currents are applied to a body during MR scans. This current flow produces a magnetic field as well as an electric field. The altered magnetic flux density along the main magnetic field direction caused by this current flow can be obtained from phase images. When there is neural activity, the conductivity of the neural cell membrane changes and the current paths around the neurons change consequently. Neural spiking activity during external current injection, therefore, causes differential phase accumulation in MR data. Statistical analysis methods can be used to identify neuronal-current-induced magnetic field changes.
ContributorsFu, Fanrui (Author) / Sadleir, Rosalind (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Kleim, Jeffrey (Committee member) / Muthuswamy, Jitendran (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
157346-Thumbnail Image.png
Description
Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays

Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays a significant role in the regulation of heart rate and cerebral blood flow that are altered during VNS. Here, the effects of acute vagal nerve stimulation using varying stimulation parameters on both heart rate and cerebral blood flow were examined. Laser Speckle Contrast Analysis (LASCA) was used to analyze the cerebral blood flow of male Long–Evans rats. In the first experiment, results showed two distinct patterns of responses to 0.8mA of stimulation whereby animals either experienced a mild or severe decrease in heart rate. Further, animals that displayed mild heart rate decreases showed an increase in cerebral blood flow that persisted beyond VNS. Animals that displayed severe decreases showed a transient decrease in cerebral blood flow followed by an increase that was greater than that observed in mild animals but progressively decreased after VNS. The results suggest two distinct patterns of changes in both heart rate and blood flow that may be related to the intensity of VNS. To investigate the effects of lower levels of stimulation, an additional group of animals were stimulated at 0.4mA. The results showed moderate changes in heart rate but no significant changes in cerebral blood flow in these animals. The results demonstrate that VNS alters both heart rate and cerebral blood flow and that these effects are dependent on current intensity.
ContributorsHillebrand, Peter (M.S.) (Author) / Kleim, Jeffrey A (Thesis advisor) / Helms Tillery, Stephen I (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2019