Matching Items (228)
Filtering by

Clear all filters

151099-Thumbnail Image.png
Description
Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.
ContributorsHillen, Brian (Author) / Jung, Ranu (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jit (Committee member) / Jindrich, Devin (Committee member) / Yamaguchi, Gary (Committee member) / Arizona State University (Publisher)
Created2012
151130-Thumbnail Image.png
Description
Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this disease do not always guarantee the improvement of the condition

Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this disease do not always guarantee the improvement of the condition of the MS patient and there has not been an accurate mechanism to measure the effectiveness of the treatment due to inter-patient heterogeneity. The factors that count for varying the performance of MS patients include environmental setting, weather, psychological status, dressing style and more. Also, patients may react differently while examined at specially arranged setting and this may not be the same while he/she is at home. Hence, it becomes a major problem for MS patients that how effectively a treatment slows down the progress of the disease and gives a relief for the patient. This thesis is trying to build a reliable system to estimate how good a treatment is for MS patients. Here I study the kinematic variables such as velocity of walking, stride length, variability and so on to find and compare the variations of the patient after a treatment given by the doctor, and trace these parameters for some patients after the treatment effect subdued.
ContributorsYin, Siyang (Author) / He, Jiping (Thesis advisor) / Pizziconi, Vincent (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2012
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
168640-Thumbnail Image.png
Description
Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) are a common comorbidity, although it is largely unknown whether HIV interacts with cocaine abstinence to uniquely alter neuroimmune function and whether HIV may modulate the efficacy of medications intended to treat CUDs. My dissertation research demonstrates using preclinical rodent models

Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) are a common comorbidity, although it is largely unknown whether HIV interacts with cocaine abstinence to uniquely alter neuroimmune function and whether HIV may modulate the efficacy of medications intended to treat CUDs. My dissertation research demonstrates using preclinical rodent models of drug self-administration and craving that systemic exposure to the HIV protein gp120 produces a unique profile of neuroimmune changes within the nucleus accumbens core (NAc core) that is distinct from early cocaine abstinence alone. After a protracted period of abstinence, gp120 exposure abolished the effect of the dopamine D3 receptor (D3R) partial agonist MC-25-41, which successfully attenuated cue-induced cocaine seeking in non-exposed rats. Further probing the role of downstream, intracellular neuroimmune function on cue-induced cocaine seeking, I examined the role of the nuclear factor kappa B (NF-κB) signaling pathway within the NAc core on cue-induced cocaine seeking after a period of protracted abstinence across sex and reinforcer type. I demonstrated that knockdown of the p65 subunit of NF-κB results in a decrease in cue-induced cocaine seeking in males, but not in females. This effect was specific to cocaine, as p65 knockdown did not affect cue-induced sucrose seeking in either males or females. Moreover, I examined expression levels of the extracellular matrix enzyme MMP-9 within the NAc core, as it is regulated by NF-κB and is an important mediator of cue-induced cocaine seeking and associated synaptic plasticity. I demonstrated that males express higher levels of MMP-9 within the NAc compared to females, and that p65 knockdown decreases NAc core MMP-9 in males but not females among cocaine cue-exposed animals. Altogether, these results suggest that immunotherapeutic medications may be useful tools in the treatment of CUDs, particularly among males that are disproportionately impacted by HIV.
ContributorsNamba, Mark Douglas (Author) / Neisewander, Janet L (Thesis advisor) / Olive, M Foster (Thesis advisor) / Sanabria, Federico (Committee member) / Ferguson, Deveroux (Committee member) / Arizona State University (Publisher)
Created2022
168690-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases worldwide, with no effective treatments or preventions. Evidence suggests that environmental factors, including dietary nutrients, contribute to the etiology of AD. Choline is an essential nutrient found in many common foods. Choline is produced endogenously, but not at levels

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases worldwide, with no effective treatments or preventions. Evidence suggests that environmental factors, including dietary nutrients, contribute to the etiology of AD. Choline is an essential nutrient found in many common foods. Choline is produced endogenously, but not at levels sufficient for healthy metabolic function and thus requires dietary supplementation. Literature shows that ~90% of Americans do not meet the adequate intake threshold for dietary choline consumption and therefore are dietary choline-deficient. While dietary choline supplementation throughout life has been shown to have significant health benefits, such as reducing AD pathology and improving cognition in a mouse model of AD, the impacts of dietary choline deficiency are unknown. Experiments were designed to understand the effects of dietary choline deficiency in healthy, non-transgenic mice (NonTg) and in the 3xTg-AD mouse model of AD. From 3 to 12 months of age, mice received either adequate choline (ChN) in the diet or were put on a choline-deficient (Ch-) diet. A Ch- diet leads to significant weight gain throughout life in both the NonTg and 3xTg-AD mice, with AD mice showing a greater increase. Additionally, impaired glucose metabolism, which is a risk factor for AD, was induced in both NonTg Ch- and 3xTg-AD Ch- mice. Interestingly, Ch- induced cardiomegaly in 3xTg-AD mice and elevated markers of cardiac dysfunction in NonTg mice to similar levels in 3xTg-AD mice. Finally, Ch- exacerbated amyloid-β plaque pathology and tau hyperphosphorylation in the hippocampus and cortex of 3xTg-AD mice. Proteomic analyses revealed Ch- induced changes in hippocampal proteins associated with postsynaptic receptor regulation, microtubule stabilization, and neuronal development, as well as well-known AD-associated proteins (MAPT, BACE1, MECP2, CREBBP). Proteomic analyses also revealed Ch- induced changes of plasma proteins associated with secondary pathologies of AD including inflammation, immune response insulin metabolism, and mitochondrial dysfunction (SAA1, SAA2, IDE, HSPD1, VDAC-1, VDACE-2). Taken together, these data suggest that dietary choline deficiency induces system-wide cellular and molecular dysfunction associated with AD across several pathogenic axes, through proteomic changes not only in the hippocampus but also in the plasma.
ContributorsDave, Nikhil (Author) / Velazquez, Ramon (Thesis advisor) / Piras, Ignazio (Committee member) / Mastroeni, Diego (Committee member) / Arizona State University (Publisher)
Created2022
171522-Thumbnail Image.png
Description
The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory

The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory system in controlling the lower and upper extremities; however, little is known about the contributions of the orofacial somatosensory system. The overall goal of this study was to determine factors that influence the sensitivity of the orofacial somatosensory system. To measure the somatosensory system's sensitivity, transcutaneous electrical current stimulation was applied to the skin overlaying the trigeminal nerve on the lower portion of the face. After applying stimulation, participants' sensitivity was determined through the detection of the electrical stimuli (i.e., perceptual threshold). The data analysis focused on the impact of (1) stimulation parameters, (2) electrode placement, and (3) motor tasks on the perceptual threshold. The results showed that, as expected, stimulation parameters (such as stimulation frequency and duration) influenced perceptual thresholds. However, electrode placement (left vs. right side of the face) and motor tasks (lip contraction vs. rest) did not influence perceptual thresholds. Overall, these findings have important implications for designing and developing therapeutic neuromodulation techniques based on trigeminal nerve stimulation.
ContributorsKhoury, Maya Elie (Author) / Daliri, Ayoub (Thesis advisor) / Patten, Jake (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2022
171979-Thumbnail Image.png
Description
Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so

Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so far as to use neuronal cultures as computing hardware, but utilizing an environment closer to a living brain means having to grapple with the same issues faced by clinicians and researchers trying to treat brain disorders. Most outstanding among these are the problems that arise with invasive interfaces. Optical techniques that use fluorescent dyes and proteins have emerged as a solution for noninvasive imaging with single-cell resolution in vitro and in vivo, but feeding in information in the form of neuromodulation still requires implanted electrodes. The implantation process of these electrodes damages nearby neurons and their connections, causes hemorrhaging, and leads to scarring and gliosis that diminish efficacy. Here, a new approach for noninvasive neuromodulation with high spatial precision is described. It makes use of a combination of ultrasound, high frequency acoustic energy that can be focused to submillimeter regions at significant depths, and electric fields, an effective tool for neuromodulation that lacks spatial precision when used in a noninvasive manner. The hypothesis is that, when combined in a specific manner, these will lead to nonlinear effects at neuronal membranes that cause cells only in the region of overlap to be stimulated. Computational modeling confirmed this combination to be uniquely stimulating, contingent on certain physical effects of ultrasound on cell membranes. Subsequent in vitro experiments led to inconclusive results, however, leaving the door open for future experimentation with modified configurations and approaches. The specific combination explored here is also not the only untested technique that may achieve a similar goal.
ContributorsNester, Elliot (Author) / Wang, Yalin (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2022
171984-Thumbnail Image.png
Description
Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired effect while avoiding the activation of neurons that produce side

Electrical stimulation of the human peripheral nervous system can be a powerful tool to treat various medical conditions and provide insight into nervous system processes. A critical challenge for many applications is to selectively activate neurons that have the desired effect while avoiding the activation of neurons that produce side effects. To stimulate peripheral fibers, the longitudinal intrafascicular electrode (LIFE) targets small groups of fibers inside the fascicle using low-amplitude pulses and is well-suited for chronic use. This work aims to understand better the ability to use intrafascicular stimulation with LIFEs to activate small groups of neurons within a fascicle selectively.A hybrid workflow was developed to simulate: 1) the production/propagation of the electric field induced by the stimulation pulse and 2) the effect of the electric field on fiber activation (recruitment). To create efficient and robust strategies for the selective recruitment of axons, recognizing the effect of each parameter on their recruitment and activation pattern is essential. Thus, using this hybrid workflow, the effects of various factors such as fascicular anatomy, electrode parameters, and stimulation pulse parameters on recruitment have been characterized, and the sensitivity of the recruitment patterns to these parameters has been explored. Results demonstrated the potential advantages of specific stimulation strategies and the sensitivity of recruitment patterns to electrode placement and tissue properties. For example, it is demonstrated: the significant effect of endoneurium conductivities on threshold levels; that a configuration with a LIFE as a local ground can be used to deselect its surrounding axons; the advantages of changing the delay between pulses in dual monopolar stimulation in targeting different axons clusters and increasing the activation frequency of some axons; how monopolar and bipolar configurations can be used to enhance spatial selectivity; the effect of longitudinal displacement of axons, electrode length and electrode movement on the recruitment and the activation pattern. In summary, this work forms the foundation for developing stimulation strategies to enhance the selectivity that can be achieved with intrafascicular stimulation.
ContributorsRouhani, Morteza (Author) / Abbas, James J (Thesis advisor) / Crook, Sharon M (Thesis advisor) / Baer, Steven M (Committee member) / Sadleir, Rosalind (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2022
171998-Thumbnail Image.png
Description
For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical

For patients with focal drug-resistant epilepsy, surgical remediation can be a hopeful last resort treatment option, but only if enough clinical signs can point to an epileptogenic tissue region. Subdural grids offer ample cortical surface area coverage to evaluate multiple regions of interest, yet they lack the spatial resolution typical of penetrating electrodes. Additionally, subthreshold stimulation through subdural grids is a stable source for detecting eloquent cortex surrounding potential epileptic tissue. Researchers have each tried introducing microelectrodes to increase the spatial resolution but ran into connectivity challenges as the desired surface area increased. Meanwhile, clinical hybrid options have shown promise by combining multiple electrode sizes, maintaining surface area coverage with an increased spatial resolution where necessary. However, a benchtop method to quantify spatial resolution or test signal summation, without the complexity of an in vivo study, has not been found in the literature; a subdural grid in gel solution has functioned previously but without a published method. Thus, a novel hybrid electrode array with a telescopic configuration including three electrode geometries, called the M$^3$ array, is proposed to maintain cortical surface area coverage and provide spatial clarity in regions of interest using precision microfabrication techniques. Electrophysiological recording with this array should enhance the clinical signal portfolio without changing how clinicians interface with the broad surface data from macros. Additionally, this would provide a source for simultaneous recording and stimulation from the same location due to the telescopic nature of the design. A novel benchtop test method should remove complexity from in vivo tests while allowing direct comparison of recording capabilities of different cortical surface electrodes. Implementing the proposed M$^3$ electrode array in intracranial monitoring improves the current technology without much compromise, enhancing patient outcomes, reducing risks, and encouraging swift clinical translation.
ContributorsGarich, Jonathan Von (Author) / Blain Christen, Jennifer M (Thesis advisor) / Abbas, James J (Committee member) / Helms Tillery, Stephen I (Committee member) / Muthuswamy, Jitendran (Committee member) / Raupp, Gregory B (Committee member) / Arizona State University (Publisher)
Created2022