Matching Items (5)
Filtering by

Clear all filters

152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
171816-Thumbnail Image.png
Description
This work has improved the quality of the solution to the sparse rewards problemby combining reinforcement learning (RL) with knowledge-rich planning. Classical methods for coping with sparse rewards during reinforcement learning modify the reward landscape so as to better guide the learner. In contrast, this work combines RL with a planner in order

This work has improved the quality of the solution to the sparse rewards problemby combining reinforcement learning (RL) with knowledge-rich planning. Classical methods for coping with sparse rewards during reinforcement learning modify the reward landscape so as to better guide the learner. In contrast, this work combines RL with a planner in order to utilize other information about the environment. As the scope for representing environmental information is limited in RL, this work has conflated a model-free learning algorithm – temporal difference (TD) learning – with a Hierarchical Task Network (HTN) planner to accommodate rich environmental information in the algorithm. In the perpetual sparse rewards problem, rewards reemerge after being collected within a fixed interval of time, culminating in a lack of a well-defined goal state as an exit condition to the problem. Incorporating planning in the learning algorithm not only improves the quality of the solution, but the algorithm also avoids the ambiguity of incorporating a goal of maximizing profit while using only a planning algorithm to solve this problem. Upon occasionally using the HTN planner, this algorithm provides the necessary tweak toward the optimal solution. In this work, I have demonstrated an on-policy algorithm that has improved the quality of the solution over vanilla reinforcement learning. The objective of this work has been to observe the capacity of the synthesized algorithm in finding optimal policies to maximize rewards, awareness of the environment, and the awareness of the presence of other agents in the vicinity.
ContributorsNandan, Swastik (Author) / Pavlic, Theodore (Thesis advisor) / Das, Jnaneshwar (Thesis advisor) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022
Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
ContributorsLal, Harsh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
156944-Thumbnail Image.png
Description
Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a

Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a fine spatial scale matching that of cortical columnar processing. Penetrating microelectrodes provide localization sufficient to isolate action potential (AP) waveforms, but often suffer from recorded signal deterioration linked to foreign body response. Micro-Electrocorticography (μECoG) surface electrodes elicit lower foreign body response and show greater chronic stability of recorded signals, though they typically lack the signal localization necessary to isolate individual APs. This dissertation validates the recording capacity of a novel, flexible, large area μECoG array with bilayer routing in a feline implant, and explores the ability of conventional μECoG arrays to detect features of neuronal activity in a very high frequency band associated with AP waveforms.

Recordings from both layers of the flexible μECoG array showed frequency features typical of cortical local field potentials (LFP) and were shown to be stable in amplitude over time. Recordings from both layers also showed consistent, frequency-dependent modulation after induction of general anesthesia, with large increases in beta and gamma band and decreases in theta band observed over three experiments. Recordings from conventional μECoG arrays over human cortex showed robust modulation in a high frequency (250-2000 Hz) band upon production of spoken words. Modulation in this band was used to predict spoken words with over 90% accuracy. Basal Ganglia neuronal AP firing was also shown to significantly correlate with various cortical μECoG recordings in this frequency band. Results indicate that μECoG surface electrodes may detect high frequency neuronal activity potentially associated with AP firing, a source of information previously unutilized by these devices.
ContributorsBarton, Cody David (Author) / Greger, Bradley (Thesis advisor, Committee member) / Santello, Marco (Committee member) / Buneo, Christopher (Committee member) / Graudejus, Oliver (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
155722-Thumbnail Image.png
Description
A robotic swarm can be defined as a large group of inexpensive, interchangeable

robots with limited sensing and/or actuating capabilities that cooperate (explicitly

or implicitly) based on local communications and sensing in order to complete a

mission. Its inherent redundancy provides flexibility and robustness to failures and

environmental disturbances which guarantee the proper completion

A robotic swarm can be defined as a large group of inexpensive, interchangeable

robots with limited sensing and/or actuating capabilities that cooperate (explicitly

or implicitly) based on local communications and sensing in order to complete a

mission. Its inherent redundancy provides flexibility and robustness to failures and

environmental disturbances which guarantee the proper completion of the required

task. At the same time, human intuition and cognition can prove very useful in

extreme situations where a fast and reliable solution is needed. This idea led to the

creation of the field of Human-Swarm Interfaces (HSI) which attempts to incorporate

the human element into the control of robotic swarms for increased robustness and

reliability. The aim of the present work is to extend the current state-of-the-art in HSI

by applying ideas and principles from the field of Brain-Computer Interfaces (BCI),

which has proven to be very useful for people with motor disabilities. At first, a

preliminary investigation about the connection of brain activity and the observation

of swarm collective behaviors is conducted. After showing that such a connection

may exist, a hybrid BCI system is presented for the control of a swarm of quadrotors.

The system is based on the combination of motor imagery and the input from a game

controller, while its feasibility is proven through an extensive experimental process.

Finally, speech imagery is proposed as an alternative mental task for BCI applications.

This is done through a series of rigorous experiments and appropriate data analysis.

This work suggests that the integration of BCI principles in HSI applications can be

successful and it can potentially lead to systems that are more intuitive for the users

than the current state-of-the-art. At the same time, it motivates further research in

the area and sets the stepping stones for the potential development of the field of

Brain-Swarm Interfaces (BSI).
ContributorsKaravas, Georgios Konstantinos (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring M. (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2017