Matching Items (4)
Filtering by

Clear all filters

Description
To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.
ContributorsHuang, Shiyang (Author) / Askin, Ronald G. (Thesis advisor) / Mirchandani, Pitu (Committee member) / McCarville, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2014
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
151051-Thumbnail Image.png
Description
Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.
ContributorsHafizoglu, Ahmet Baykal (Author) / Gel, Esma S (Thesis advisor) / Villalobos, Jesus R (Committee member) / Mirchandani, Pitu (Committee member) / Keskinocak, Pinar (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2012
156337-Thumbnail Image.png
Description
Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.
ContributorsBren, Austin (Author) / Saghafian, Soroush (Thesis advisor) / Mirchandani, Pitu (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2018