Matching Items (3)

150145-Thumbnail Image.png

Combretastatin A-2 synthetic modifications

Description

Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In

Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In order to further explore the bioactivity of this molecule, a diiodo derivative of CA-4, as well as its phosphate prodrug, was synthesized and analyzed for its biological activity; although only a scale up synthesis of this compound was performed herein for ongoing analysis. In general, no increased specificity was noted for the human cancer cell lines. Antiangiogenic properties were similar to the untreated control. The diiodocombstatin was active against M. luteus, and its phosphate prodrugs were very active against N. gonorrhoeae. Combretastain A-2 is another biologically active stilbene isolated from Combretum Caffrum Kuntze. In an attempt to increase biological activity of this molecule both mono-iodo and diiodo derivatives have been partially synthesized. The initial step involving the iodination of piperonal utilizes a novel, cost effective and mild reaction. The iodo stilbenes were obtained via a Wittig reaction using phosphonium salts 25 and 27 along with 2,3-Bis-[tert-butyldimethylsiloxy]-4-methoxy benzaldehyde 29. Deprotection of the subsequent z-stilbenes, non-isolated mono-iodo stilbene and the diiodo 30 produced two synthetic objective z-stilbenes 16 and 17. Synthesis as well as biological analysis is ongoing.

Contributors

Agent

Created

Date Created
  • 2011

149699-Thumbnail Image.png

Synthesis and evaluation of a new class of cancer chemotherapeutics based on purine-like extended amidines

Description

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have shown between a 100 and a 1000-fold increase in specificity towards lung, colon, CNS, and melanoma cell lines. These ATP mimics have been found to correlate with sequestosome 1 (SQSTM1), a protein implicated in drug resistance and cell survival in various cancer cell lines. Using the DTP COMPARE algorithm, compounds 1A and 1B were shown to correlate to each other at 77%, but failed to correlate with other benzimidazole based extended amidines previously synthesized in this laboratory suggesting they operate through a different biological mechanism.

Contributors

Agent

Created

Date Created
  • 2011

150084-Thumbnail Image.png

Synthesis of redox-cycling therapeutic agents

Description

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described. The bleomycins (BLMs) are a group of glycopeptide antibiotics that have been used clinically to treat several types of cancers. The antitumor activity of BLM is thought to be related to its degradation of DNA, and possibly RNA. Previous studies have indicated that the methylvalerate subunit of bleomycin plays an important role in facilitating DNA cleavage by bleomycin and deglycobleomycin. A series of methylvalerate analogues have been synthesized and incorporated into deglycobleomycin congeners by the use of solid-phase synthesis. All of the deglycobleomycin analogues were found to effect the relaxation of plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A5. Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage. The second project focused on the synthesis of bicyclic pyridinol analogues of alpha-tocopherol. Bicyclic pyridinol antioxidants have recently been reported to suppress the autoxidation of methyl linoleate more effectively than alpha-tocopherol. However, the complexity of the synthetic routes has hampered their further development as therapeutic agents. Described herein is a concise synthesis of two bicyclic pridinol antioxidants and a facile approach to their derivatives with simple alkyl chains attached to the antioxidant core. These analogues were shown to retain biological activity and exhibit tocopherol-like behaviour.

Contributors

Agent

Created

Date Created
  • 2011