Matching Items (3)
Filtering by

Clear all filters

156060-Thumbnail Image.png
Description
As urban populations become increasingly dense, massive amounts of new 'big' data that characterize human activity are being made available and may be characterized as having a large volume of observations, being produced in real-time or near real-time, and including a diverse variety of information. In particular, spatial interaction (SI)

As urban populations become increasingly dense, massive amounts of new 'big' data that characterize human activity are being made available and may be characterized as having a large volume of observations, being produced in real-time or near real-time, and including a diverse variety of information. In particular, spatial interaction (SI) data - a collection of human interactions across a set of origins and destination locations - present unique challenges for distilling big data into insight. Therefore, this dissertation identifies some of the potential and pitfalls associated with new sources of big SI data. It also evaluates methods for modeling SI to investigate the relationships that drive SI processes in order to focus on human behavior rather than data description.

A critical review of the existing SI modeling paradigms is first presented, which also highlights features of big data that are particular to SI data. Next, a simulation experiment is carried out to evaluate three different statistical modeling frameworks for SI data that are supported by different underlying conceptual frameworks. Then, two approaches are taken to identify the potential and pitfalls associated with two newer sources of data from New York City - bike-share cycling trips and taxi trips. The first approach builds a model of commuting behavior using a traditional census data set and then compares the results for the same model when it is applied to these newer data sources. The second approach examines how the increased temporal resolution of big SI data may be incorporated into SI models.

Several important results are obtained through this research. First, it is demonstrated that different SI models account for different types of spatial effects and that the Competing Destination framework seems to be the most robust for capturing spatial structure effects. Second, newer sources of big SI data are shown to be very useful for complimenting traditional sources of data, though they are not sufficient substitutions. Finally, it is demonstrated that the increased temporal resolution of new data sources may usher in a new era of SI modeling that allows us to better understand the dynamics of human behavior.
ContributorsOshan, Taylor Matthew (Author) / Fotheringham, A. S. (Thesis advisor) / Farmer, Carson J.Q. (Committee member) / Rey, Sergio S.J. (Committee member) / Nelson, Trisalyn (Committee member) / Arizona State University (Publisher)
Created2017
156347-Thumbnail Image.png
Description

Factors that explain human mobility and active transportation include built environment and infrastructure features, though few studies incorporate specific geographic detail into examinations of mobility. Little is understood, for example, about the specific paths people take in urban areas or the influence of neighborhoods on their activity. Detailed analysis of

Factors that explain human mobility and active transportation include built environment and infrastructure features, though few studies incorporate specific geographic detail into examinations of mobility. Little is understood, for example, about the specific paths people take in urban areas or the influence of neighborhoods on their activity. Detailed analysis of human activity has been limited by the sampling strategies employed by conventional data sources. New crowdsourced datasets, or data gathered from smartphone applications, present an opportunity to examine factors that influence human activity in ways that have not been possible before; they typically contain more detail and are gathered more frequently than conventional sources. Questions remain, however, about the utility and representativeness of crowdsourced data. The overarching aim of this dissertation research is to identify how crowdsourced data can be used to better understand human mobility. Bicycling activity is used as a case study to examine human mobility because smartphone apps aimed at collecting bicycle routes are readily available and bicycling is under studied in comparison to other modes. The research herein aimed to contribute to the knowledge base on crowdsourced data and human mobility in three ways. First, the research examines how conventional (e.g., counts, travel surveys) and crowdsourced data correspond in representing bicycling activity. Results identified where the data correspond and differ significantly, which has implications for using crowdsourced data for planning and policy decisions. Second, the research examined the factors that influence cycling activity generated by smartphone cycling apps. The best predictors of activity were median weekly rent, percentage of residential land, and the number of people using two or more modes to commute in an area. Finally, the third part of the dissertation seeks to understand the impact of bicycle lanes and bicycle ridership on residential housing prices. Results confirmed that bicycle lanes in the neighborhood of a home positively influence sale prices, though ridership was marginally related to house price. This research demonstrates that knowledge obtained through crowdsourced data informs us about smaller geographic areas and details on where people bicycle, who uses bicycles, and the impact of the built environment on bicycling activity.

ContributorsConrow, Lindsey (Author) / Wentz, Elizabeth (Thesis advisor) / Nelson, Trisalyn (Committee member) / Mooney, Sian (Committee member) / Pettit, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
157264-Thumbnail Image.png
Description
Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of

Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.
ContributorsZhou, Xiran (Author) / Li, Wenwen (Thesis advisor) / Myint, Soe Win (Committee member) / Arundel, Samantha Thompson (Committee member) / Arizona State University (Publisher)
Created2019