Matching Items (13)
Filtering by

Clear all filters

151337-Thumbnail Image.png
Description
One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum

One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum wires with the path integral Monte Carlo (PIMC) method. PIMC is a tool for simulating many-body quantum systems at finite temperature. Its ability to calculate thermodynamic properties and various correlation functions makes it an ideal tool in bridging experiments with theories. A general study of the features interpreted by the Luttinger liquid theory and observed in experiments is first presented, showing the need for new PIMC calculations in this field. I calculate the DC conductance at finite temperature for both noninteracting and interacting electrons. The quantized conductance is identified in PIMC simulations without making the same approximation in the Luttinger model. The low electron density regime is subject to strong interactions, since the kinetic energy decreases faster than the Coulomb interaction at low density. An electron state called the Wigner crystal has been proposed in this regime for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the Wigner crystal. The quantum fluctuations suppress the long range correla- tions, making the order short-ranged. Spin correlations are calculated and used to evaluate the spin coupling strength in a zig-zag state. I also find that as the density increases, electrons undergo a structural phase transition to a dimer state, in which two electrons of opposite spins are coupled across the two rows of the zig-zag. A phase diagram is sketched for a range of densities and transverse confinements. The quantum point contact (QPC) is a typical realization of quantum wires. I study the QPC by explicitly simulating a system of electrons in and around a Timp potential (Timp, 1992). Localization of a single electron in the middle of the channel is observed at 5 K, as the split gate voltage increases. The DC conductance is calculated, which shows the effect of the Coulomb interaction. At 1 K and low electron density, a state similar to the Wigner crystal is found inside the channel.
ContributorsLiu, Jianheng, 1982- (Author) / Shumway, John B (Thesis advisor) / Schmidt, Kevin E (Committee member) / Chen, Tingyong (Committee member) / Yu, Hongbin (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
152312-Thumbnail Image.png
Description
The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic bulk Monte Carlo simulation code which in the long-time limit solves the Boltzmann transport equation for electrons; and an extension

The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic bulk Monte Carlo simulation code which in the long-time limit solves the Boltzmann transport equation for electrons; and an extension to this code that solves for the bulk properties of strained silicon. One scattering table is needed for conventional silicon, whereas, because of the strain breaking the symmetry of the system, three scattering tables are needed for modeling strained silicon material. Simulation results for the average drift velocity and the average electron energy are in close agreement with published data. A Monte Carlo device simulation tool has also been employed to integrate the effects of self-heating into device simulation for Silicon on Insulator devices. The effects of different types of materials for buried oxide layers have been studied. Sapphire, Aluminum Nitride (AlN), Silicon dioxide (SiO2) and Diamond have been used as target materials of interest in the analysis and the effects of varying insulator layer thickness have also been investigated. It was observed that although AlN exhibits the best isothermal behavior, diamond is the best choice when thermal effects are accounted for.
ContributorsQazi, Suleman (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Tao, Meng (Committee member) / Arizona State University (Publisher)
Created2013
153101-Thumbnail Image.png
Description
Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be

Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be explained by adding the spin-orbit interactions in the potential. Their effects change the equation of state and other properties of nuclear matter. Therefore, the simulation of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method for calculating the ground state and low-lying exited states in nuclei and nuclear matter. It has successfully employed the Argonne v6' two-body potential to calculate the equation of state in nuclear matter, and has been applied to light nuclei with reasonable agreement with experimental results. However, the spin-orbit interactions were not included in the previous simulations, because the isospin-dependent spin-orbit potential is difficult in the quantum Monte Carlo method. This work develops a new method using extra auxiliary fields to break up the interactions between nucleons, so that the spin-orbit interaction with isospin can be included in the Hamiltonian, and ground-state energy and other properties can be obtained.
ContributorsZhang, Jie (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2014
150248-Thumbnail Image.png
Description
In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work,

In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work, the integration of random defects positioned across the channel at the Si:SiO2 interface from source end to the drain end in the presence of different random dopant distributions are used to conduct Ensemble Monte-Carlo ( EMC ) based numerical simulation of key device performance metrics for 45 nm gate length MOSFET device. The two main performance parameters that affect RTS based reliability measurements are percentage change in threshold voltage and percentage change in drain current fluctuation in the saturation region. It has been observed as a result of the simulation that changes in both and values moderately decrease as the defect position is gradually moved from source end to the drain end of the channel. Precise analytical device physics based model needs to be developed to explain and assess the EMC simulation based higher VT fluctuations as experienced for trap positions at the source side. A new analytical model has been developed that simultaneously takes account of dopant number variations in the channel and depletion region underneath and carrier mobility fluctuations resulting from fluctuations in surface potential barriers. Comparisons of this new analytical model along with existing analytical models are shown to correlate with 3D EMC simulation based model for assessment of VT fluctuations percentage induced by a single interface trap. With scaling of devices beyond 32 nm node, halo doping at the source and drain are routinely incorporated to combat the threshold voltage roll-off that takes place with effective channel length reduction. As a final study on this regard, 3D EMC simulation method based computations of threshold voltage fluctuations have been performed for varying source and drain halo pocket length to illustrate the threshold voltage fluctuations related reliability problems that have been aggravated by trap positions near the source at the interface compared to conventional 45 nm MOSFET.
ContributorsAshraf, Nabil Shovon (Author) / Vasileska, Dragica (Thesis advisor) / Schroder, Dieter (Committee member) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150071-Thumbnail Image.png
Description
In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user to do that by keeping every parameter used to define a material, within the non-parabolic band approximation, a variable in the control of the user. A material is defined by defining its valleys, energies, valley effective masses and their directions. The types of scattering to be included can also be chosen. The non-parabolic band structure model is used. With the deployment of the generalized Monte Carlo tool onto www.nanoHUB.org the tool will be available to users around the world. This makes it a very useful educational tool that can be incorporated into curriculums. The tool is integrated with Rappture, to allow user-friendly access of the tool. The user can freely define a material in an easy systematic way without having to worry about the coding involved. The output results are automatically graphed and since the code incorporates an analytic band structure model, it is relatively fast. The versatility of the tool has been investigated and has produced results closely matching the experimental values for some common materials. The tool has been uploaded onto www.nanoHUB.org by integrating it with the Rappture interface. By using Rappture as the user interface, one can easily make changes to the current parameter sets to obtain even more accurate results.
ContributorsHathwar, Raghuraj (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
154064-Thumbnail Image.png
Description
Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo

Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo (MC) solution of the phonon Boltzmann Transport Equation. The phonon MC solver was developed next as part of this thesis. Simulation results of the thermal conductivity in bulk Si show good agreement with theoretical/experimental values from literature.
ContributorsYoo, Seung Kyung (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
156592-Thumbnail Image.png
Description
In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties

In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties behave over the BEC-BCS crossover. The vortex excitation energy, density profiles, and vortex core properties related to the current are calculated. A density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit is found. Size-effect dependencies in the disk geometry were carefully studied. In the second part of this dissertation I turn my attention to a very interesting problem in nuclear physics. In most simulations of nonrelativistic nuclear systems, the wave functions are found by solving the many-body Schrödinger equations, and they describe the quantum-mechanical amplitudes of the nucleonic degrees of freedom. In those simulations the pionic contributions are encoded in nuclear potentials and electroweak currents, and they determine the low-momentum behavior. By contrast, in this work I present a novel quantum Monte Carlo formalism in which both relativistic pions and nonrelativistic nucleons are explicitly included in the quantum-mechanical states of the system. I report the renormalization of the nucleon mass as a function of the momentum cutoff, an Euclidean time density correlation function that deals with the short-time nucleon diffusion, and the pion cloud density and momentum distributions. In the two nucleon sector the interaction of two static nucleons at large distances reduces to the one-pion exchange potential, and I fit the low-energy constants of the contact interactions to reproduce the binding energy of the deuteron and two neutrons in finite volumes. I conclude by showing that the method can be readily applied to light-nuclei.
ContributorsMadeira, Lucas (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Beckstein, Oliver (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2018
154695-Thumbnail Image.png
Description
Self-heating degrades the performance of devices in advanced technology nodes. Understanding of self-heating effects is necessary to improve device performance. Heat generation in these devices occurs at nanometer scales but heat transfer is a microscopic phenomena. Hence a multi-scale modeling approach is required to study the self-heating effects. A state

Self-heating degrades the performance of devices in advanced technology nodes. Understanding of self-heating effects is necessary to improve device performance. Heat generation in these devices occurs at nanometer scales but heat transfer is a microscopic phenomena. Hence a multi-scale modeling approach is required to study the self-heating effects. A state of the art Monte Carlo device simulator and the commercially available Giga 3D tool from Silvaco are used in our study to understand the self heating effects. The Monte Carlo device simulator solves the electrical transport and heat generation for nanometer length scales accurately while the Giga 3D tool solves for thermal transport over micrometer length scales. The approach used is to understand the self-heating effects in a test device structure, composed of a heater and a sensor, fabricated and characterized by IMEC. The heater is the Device Under Test(DUT) and the sensor is used as a probe. Therefore, the heater is biased in the saturation region and the sensor is biased in the sub-threshold regime. Both are planar MOSFETs of gate length equal to 22 nm. The simulated I-V characteristics of the sensor match with the experimental behavior at lower applied drain voltages but differ at higher applied biases.

The self-heating model assumes that the heat transport within the device follows Energy Balance model which may not be accurate. To properly study heat transport within the device, a state of the art Monte Carlo device simulator is necessary. In this regard, the Phonon Monte Carlo(PMC) simulator is developed. Phonons are treated as quasi particles that carry heat energy. Like electrons, phonons obey a corresponding Boltzmann Transport Equation(BTE) which can be used to study their transport. The direct solution of the BTE for phonons is possible, but it is difficult to incorporate all scattering mechanisms. In the Monte Carlo based solution method, it is easier to incorporate different relevant scattering mechanisms. Although the Monte Carlo method is computationally intensive, it provides good insight into the physical nature of the transport problem. Hence Monte Carlo based techniques are used in the present work for studying phonon transport. Monte Carlo simulations require calculating the scattering rates for different scattering processes. In the present work, scattering rates for three phonon interactions are calculated from different approaches presented in the literature. Optical phonons are also included in the transport problem. Finally, the temperature dependence of thermal conductivity for silicon is calculated in the range from 100K to 900K and is compared to available experimental data.
ContributorsShaik, Abdul Rawoof (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephan (Committee member) / Arizona State University (Publisher)
Created2016