Matching Items (4)
Filtering by

Clear all filters

152045-Thumbnail Image.png
Description
This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies,

This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies, it is required to have devices with better current carrying capability and better reproducibility. This brings the idea of new material for channel layer of these devices. Researchers have tried poly silicon materials, organic materials and amorphous mixed oxide materials as a replacement to conventional amorphous silicon layer. Due to its low price and easy manufacturing process, amorphous mixed oxide thin film transistors have become a viable option to replace the conventional ones in order to achieve high performance display circuits. But with new materials emerging, comes the challenge of reliability and stability issues associated with it. Performance measurement under bias stress and bias-illumination stress have been reported previously. This work proposes novel post processing low temperature long time annealing in optimum ambient in order to annihilate or reduce the defects and vacancies associated with amorphous material which lead to the instability or even the failure of the devices. Thin film transistors of a-IGZO has been tested for standalone illumination stress and bias-illumination stress before and after annealing. HP 4155B semiconductor parameter analyzer has been used to stress the devices and measure the output characteristics and transfer characteristics of the devices. Extra attention has been given about the effect of forming gas annealing on a-IGZO thin film. a-IGZO thin film deposited on silicon substrate has been tested for resistivity, mobility and carrier concentration before and after annealing in various ambient. Elastic Recoil Detection has been performed on the films to measure the amount of hydrogen atoms present in the film. Moreover, the circuit parameters of the thin film transistors has been extracted to verify the physical phenomenon responsible for the instability and failure of the devices. Parameters like channel resistance, carrier mobility, power factor has been extracted and variation of these parameters has been observed before and after the stress.
ContributorsRuhul Hasin, Muhammad (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152898-Thumbnail Image.png
Description
Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface

Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface area in a light weight rugged form. Such a neutron detector could be suitable for deployment at ports of entry. The specific approach used in this research, uses a neutron converter layer which captures incident thermal neutrons, and then emits ionizing charged particles. These ionizing particles cause electron-hole pair generation within a single pixel's integrated sensing diode. The resulting charge is then amplified via a low-noise amplifier. This document begins by discussing the current state of the art in neutron detection and the associated challenges. Then, for the purpose of resolving some of these issues, recent design and modeling efforts towards developing an improved neutron detection system are described. Also presented is a low-noise active pixel sensor (APS) design capable of being implemented in low temperature indium gallium zinc oxide (InGaZnO) or amorphous silicon (a-Si:H) thin film transistor process compatible with plastic substrates. The low gain and limited scalability of this design are improved upon by implementing a new multi-stage self-resetting APS. For each APS design, successful radiation measurements are also presented using PiN diodes for charged particle detection. Next, detection array readout methodologies are modeled and analyzed, and use of a matched filter readout circuit is described as well. Finally, this document discusses detection diode integration with the designed TFT-based APSs.
ContributorsKunnen, George (Author) / Allee, David (Thesis advisor) / Garrity, Douglas (Committee member) / Gnade, Bruce (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
152987-Thumbnail Image.png
Description
This work explores how flexible electronics and display technology can be applied to develop new biomedical devices for medical, biological, and life science applications. It demonstrates how new biomedical devices can be manufactured by only modifying or personalizing the upper layers of a conventional thin film transistor (TFT) display process.

This work explores how flexible electronics and display technology can be applied to develop new biomedical devices for medical, biological, and life science applications. It demonstrates how new biomedical devices can be manufactured by only modifying or personalizing the upper layers of a conventional thin film transistor (TFT) display process. This personalization was applied first to develop and demonstrate the world's largest flexible digital x-ray detector for medical and industrial imaging, and the world's first flexible ISFET pH biosensor using TFT technology. These new, flexible, digital x-ray detectors are more durable than conventional glass substrate x-ray detectors, and also can conform to the surface of the object being imaged. The new flexible ISFET pH biosensors are >10X less expensive to manufacture than comparable CMOS-based ISFETs and provide a sensing area that is orders of magnitude larger than CMOS-based ISFETs. This allows for easier integration with area intensive chemical and biological recognition material as well as allow for a larger number of unique recognition sites for low cost multiple disease and pathogen detection.

The flexible x-ray detector technology was then extended to demonstrate the viability of a new technique to seamlessly combine multiple smaller flexible x-ray detectors into a single very large, ultimately human sized, composite x-ray detector for new medical imaging applications such as single-exposure, low-dose, full-body digital radiography. Also explored, is a new approach to increase the sensitivity of digital x-ray detectors by selectively disabling rows in the active matrix array that are not part of the imaged region. It was then shown how high-resolution, flexible, organic light-emitting diode display (OLED) technology can be used to selectively stimulate and/or silence small groups of neurons on the cortical surface or within the deep brain as a potential new tool to diagnose and treat, as well as understand, neurological diseases and conditions. This work also explored the viability of a new miniaturized high sensitivity fluorescence measurement-based lab-on-a-chip optical biosensor using OLED display and a-Si:H PiN photodiode active matrix array technology for point-of-care diagnosis of multiple disease or pathogen biomarkers in a low cost disposable configuration.
ContributorsSmith, Joseph T. (Author) / Allee, David (Thesis advisor) / Goryll, Michael (Committee member) / Kozicki, Michael (Committee member) / Blain Christen, Jennifer (Committee member) / Couture, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
149554-Thumbnail Image.png
Description
The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium

The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium tin oxide) films on PEN (polyethylene naphthalate) by inserting a thin layer of silver layer between two ITO layers. The multilayer with an optimum Ag mid-layer thickness, of 8 nm, exhibited excellent photopic average transmittance (~ 88 %), resistivity (~ 2.7 × 10-5 µ-cm.) and has the best Hackee figure of merit (41.0 × 10-3 Ω-1). The electrical conduction is dominated by two different scattering mechanisms depending on the thickness of the Ag mid-layer. Optical transmission is explained by scattering losses and absorption of light due to inter-band electronic transitions. A systematic study was carried out to improve the performance/stability of the TFTs on PEN. The performance and stability of a-Si:H and a-IZO (amorphous indium zinc oxide) TFTs were improved by performing a systematic low temperature (150 °C) anneals for extended times. For 96 hours annealed a-Si:H TFTs, the sub-threshold slope and off-current were reduced by a factor ~ 3 and by 2 orders of magnitude, respectively when compared to unannealed a-Si:H TFTs. For a-IZO TFTs, 48 hours of annealing is found to be the optimum time for the best performance and elevated temperature stability. These devices exhibit saturation mobility varying between 4.5-5.5 cm2/V-s, ION/IOFF ratio was 106 and a sub-threshold swing variation of 1-1.25 V/decade. An in-depth study on the mechanical and electromechanical stress response on the electrical properties of the a-IZO TFTs has also been investigated. Finally, the a-Si:H TFTs were exposed to gamma radiation to examine their radiation resistance. The interface trap density (Nit) values range from 5 to 6 × 1011 cm-2 for only electrical stress bias case. For "irradiation only" case, the Nit value increases from 5×1011 cm-2 to 2×1012 cm-2 after 3 hours of gamma radiation exposure, whereas it increases from 5×1011 cm-2 to 4×1012 cm-2 for "combined gamma and electrical stress".
ContributorsIndluru, Anil (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011