Matching Items (8)
Filtering by

Clear all filters

152378-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to 45nm PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 22nm and 90nm nodes with less than a 5% error. Several other 90nm and 22nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H). Further capabilities of PANDA are demonstrated by the first full-chip silicon of PANDA which is implemented on 65nm process This system consists of a 24×25 cell array, reconfigurable interconnect and configuration memory. The voltage and current reference circuits, op amps and a VCO with a phase interpolation circuit are emulated by PANDA.
ContributorsSuh, Jounghyuk (Author) / Bakkaloglu, Bertan (Thesis advisor) / Cao, Yu (Committee member) / Ozev, Sule (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152826-Thumbnail Image.png
Description
The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on

The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on the resolution of microscope scan tool, all these defects are categorized into four groups of defects by both function and location, bias circuit defect, first stage amplifier defect, output stage defect and common mode feedback defect, separately. Each fault result is attributed to one of these four region defects.Therefore, analog testing algorithm and automotive tool could be generated to assist testing engineers to meet the demand of large numbers of chips.
ContributorsLu, Zhijian (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
154116-Thumbnail Image.png
Description
RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure

RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). However, this conversion circuitry is subject to similar process, voltage, and temperature (PVT) variations as the DUT and affects the measurement accuracy. So, it is important to monitor BIST performance over time, voltage and temperature, such that accurate in-field measurements can be performed.

In this research, a multistep BIST solution using only baseband signals for test analysis is presented. An on-chip signal generation circuit, which is robust with respect to time, supply voltage, and temperature variations is used for self-calibration of the BIST system before the DUT measurement. Using mathematical modelling, an analytical expression for the output signal is derived first and then test signals are devised to extract the output power of the DUT. By utilizing a standard 180nm IBM7RF CMOS process, a 2.4GHz low power RF IC incorporated with the proposed BIST circuitry and on-chip test signal source is designed and fabricated. Experimental results are presented, which show this BIST method can monitor the DUT’s output power with +/- 0.35dB accuracy over a 20dB power dynamic range.
ContributorsGangula, Sudheer Kumar Reddy (Author) / Kitchen, Jennifer (Thesis advisor) / Ozev, Sule (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
156773-Thumbnail Image.png
Description
As integrated technologies are scaling down, there is an increasing trend in the

process,voltage and temperature (PVT) variations of highly integrated RF systems.

Accounting for these variations during the design phase requires tremendous amount

of time for prediction of RF performance and optimizing it accordingly. Thus, there

is an increasing gap between the need

As integrated technologies are scaling down, there is an increasing trend in the

process,voltage and temperature (PVT) variations of highly integrated RF systems.

Accounting for these variations during the design phase requires tremendous amount

of time for prediction of RF performance and optimizing it accordingly. Thus, there

is an increasing gap between the need to relax the RF performance requirements at

the design phase for rapid development and the need to provide high performance

and low cost RF circuits that function with PVT variations. No matter how care-

fully designed, RF integrated circuits (ICs) manufactured with advanced technology

nodes necessitate lengthy post-production calibration and test cycles with expensive

RF test instruments. Hence design-for-test (DFT) is proposed for low-cost and fast

measurement of performance parameters during both post-production and in-eld op-

eration. For example, built-in self-test (BIST) is a DFT solution for low-cost on-chip

measurement of RF performance parameters. In this dissertation, three aspects of

automated test and calibration, including DFT mathematical model, BIST hardware

and built-in calibration are covered for RF front-end blocks.

First, the theoretical foundation of a post-production test of RF integrated phased

array antennas is proposed by developing the mathematical model to measure gain

and phase mismatches between antenna elements without any electrical contact. The

proposed technique is fast, cost-efficient and uses near-field measurement of radiated

power from antennas hence, it requires single test setup, it has easy implementation

and it is short in time which makes it viable for industrialized high volume integrated

IC production test.

Second, a BIST model intended for the characterization of I/Q offset, gain and

phase mismatch of IQ transmitters without relying on external equipment is intro-

duced. The proposed BIST method is based on on-chip amplitude measurement as

in prior works however,here the variations in the BIST circuit do not affect the target

parameter estimation accuracy since measurements are designed to be relative. The

BIST circuit is implemented in 130nm technology and can be used for post-production

and in-field calibration.

Third, a programmable low noise amplifier (LNA) is proposed which is adaptable

to different application scenarios depending on the specification requirements. Its

performance is optimized with regards to required specifications e.g. distance, power

consumption, BER, data rate, etc.The statistical modeling is used to capture the

correlations among measured performance parameters and calibration modes for fast

adaptation. Machine learning technique is used to capture these non-linear correlations and build the probability distribution of a target parameter based on measurement results of the correlated parameters. The proposed concept is demonstrated by

embedding built-in tuning knobs in LNA design in 130nm technology. The tuning

knobs are carefully designed to provide independent combinations of important per-

formance parameters such as gain and linearity. Minimum number of switches are

used to provide the desired tuning range without a need for an external analog input.
ContributorsShafiee, Maryam (Author) / Ozev, Sule (Thesis advisor) / Diaz, Rodolfo (Committee member) / Ogras, Umit Y. (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2018
152396-Thumbnail Image.png
Description
In thesis, a test time reduction (a low cost test) methodology for digitally-calibrated pipeline analog-to-digital converters (ADCs) is presented. A long calibration time is required in the final test to validate performance of these designs. To reduce total test time, optimized calibration technique and calibrated effective number of bits (ENOB)

In thesis, a test time reduction (a low cost test) methodology for digitally-calibrated pipeline analog-to-digital converters (ADCs) is presented. A long calibration time is required in the final test to validate performance of these designs. To reduce total test time, optimized calibration technique and calibrated effective number of bits (ENOB) prediction from calibration coefficient will be presented. With the prediction technique, failed devices can be identified only without actual calibration. This technique reduces significant amount of time for the total test time.
ContributorsKim, Kibeom (Author) / Ozev, Sule (Thesis advisor) / Kitchen, Jennifer (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2013
154267-Thumbnail Image.png
Description
Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software

Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software and services of IoT system focus on data collection and processing to make decisions, the underlying hardware is responsible for sensing the information, preprocess and transmit it to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid prototyping platforms that would help accelerate the hardware design process. However, depending on the target IoT application, different sensors are required to sense the signals such as heart-rate, temperature, pressure, acceleration, etc., and there is a great need for reconfigurable platforms that can prototype different sensor interfacing circuits.

This thesis primarily focuses on two important hardware aspects of an IoT system: (a) an FPAA based reconfigurable sensing front-end system and (b) an FPGA based reconfigurable processing system. To enable reconfiguration capability for any sensor type, Programmable ANalog Device Array (PANDA), a transistor-level analog reconfigurable platform is proposed. CAD tools required for implementation of front-end circuits on the platform are also developed. To demonstrate the capability of the platform on silicon, a small-scale array of 24×25 PANDA cells is fabricated in 65nm technology. Several analog circuit building blocks including amplifiers, bias circuits and filters are prototyped on the platform, which demonstrates the effectiveness of the platform for rapid prototyping IoT sensor interfaces.

IoT systems typically use machine learning algorithms that run on the servers to process the data in order to make decisions. Recently, embedded processors are being used to preprocess the data at the energy-constrained sensor node or at IoT gateway, which saves considerable energy for transmission and bandwidth. Using conventional CPU based systems for implementing the machine learning algorithms is not energy-efficient. Hence an FPGA based hardware accelerator is proposed and an optimization methodology is developed to maximize throughput of any convolutional neural network (CNN) based machine learning algorithm on a resource-constrained FPGA.
ContributorsSuda, Naveen (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Yu, Shimeng (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2016
158689-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they

Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they must be calibrated again using physical calibration technique, which is an expensive process to conduct. However, these sensors can also be calibrated infield by applying an on-chip electrical stimulus to the sensor. Electrical stimulus-based calibration could bring the cost of testing and calibration significantly down as compared to factory testing. In this thesis, simulations are presented to formulate a statistical prediction model based on an electrical stimulus. Results from two different approaches of electrical calibration have been discussed. A prediction model with a root mean square error of 1% has been presented in this work. Experiments were conducted on commercially available accelerometers to test the techniques used for simulations.
ContributorsBassi, Ishaan (Author) / Ozev, Sule (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020