Matching Items (2)
Filtering by

Clear all filters

153782-Thumbnail Image.png
Description
Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in

Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young’s Modulus and Poisson’s ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.
ContributorsHarrington, Joseph (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2015
149529-Thumbnail Image.png
Description
This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D

This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D software package, COULOMB 8.0, based on the concept of Boundary Element Method (BEM). The electric field was calculated under dry and wet conditions. Compo-site insulators experience more electrical stress when compared to porcelain and are also more prone to damage caused by corona activity. The work presented here investigates the effect of corona rings of specific dimensions and bundled conductors on the electric field along composite insulators. Inappropriate placement or dimensions of corona rings could enhance the electric field instead of mitigating it. Corona ring optimization for a 1000 kV composite insulator was per-formed by changing parameters of the ring, such as the diameter of the ring, thickness of the ring tube and the projection of the ring from the high voltage energized end fitting. Grading rings were designed for Ultra High Voltage (UHV) systems that use two units of composite insulators in pa-rallel. The insulation distance, which bears 50% of the total applied voltage, is raised by 61% with the grading ring installed, when compared to the distance without the grading ring. In other words, the electric field and voltage distribution was found to be more linear with the application of grad-ing rings. The second part of this project was carried out using the EPRI designed software EPIC. This is based on the concept of Charge Simulation method (CSM). Comparisons were made be-tween electric field magnitude along composite insulators used for suspension and dead end configuration for system voltages ranging from 138 kV to 500 kV. It was found that the dead end composite insulators experience significantly higher electrical stress when compared to their suspension counterpart. It was also concluded that this difference gets more prominent as the system voltage increases. A comparison made between electric field distribution along composite insulators used in single and double dead end structures suggested that the electric stress experienced by the single dead end composite insulators is relatively higher when compared to double dead end composite insulators.
ContributorsDoshi, Tanushri (Author) / Gorur, Ravi S (Thesis advisor) / Vittal, Vijay (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010