Matching Items (3)
149464-Thumbnail Image.png
Description
Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual

Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's social network. Determining the "social value" of one's contacts is a valuable outcome of this research. The algorithms we developed were tested on Twitter, which is an extremely popular social network. Twitter was chosen due to its popularity and a majority of the communications artifacts on Twitter is publically available. In this work, the social network of a user refers to the "following relationship" social network. Our algorithm is not specific to Twitter, and is applicable to other social networks, where the network topology and communications are accessible. My approaches are as follows. For a user interested in using the system, I first determine the immediate social network of the user as well as the social contacts for each person in this network. Afterwards, I establish and extend the social network for each user. For each member of the social network, their tweet data are analyzed and represented by using a word distribution. To accomplish this, I use WordNet, a popular lexical database, to determine semantic similarity between two words. My mechanism of search combines both communication distance between two users and social relationships to determine the search results. Additionally, I developed a search interface, where a user can interactively query the system. I conducted preliminary user study to evaluate the quality and utility of my method and system against several baseline methods, including the default Twitter search. The experimental results from the user study indicate that my method is able to find relevant people and identify valuable contacts in one's social circle based on the query. The proposed system outperforms baseline methods in terms of standard information retrieval metrics.
ContributorsXu, Ke (Author) / Sundaram, Hari (Thesis advisor) / Ye, Jieping (Committee member) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
157595-Thumbnail Image.png
Description
Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done

Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. Similar concepts can be applied to music to learn fixed length representations for playlists and the learned representations can then be used for downstream tasks such as playlist comparison and recommendation.

In this thesis, the problem of learning a fixed-length representation is formulated in an unsupervised manner, using Neural Machine Translation (NMT), where playlists are interpreted as sentences and songs as words. This approach is compared with other encoding architectures and evaluated using the suite of tasks commonly used for evaluating sentence embeddings, along with a few additional tasks pertaining to music. The aim of the evaluation is to study the traits captured by the playlist embeddings such that these can be leveraged for music recommendation purposes. This work lays down the foundation for analyzing music playlists and learning the patterns that exist in the playlists in an end-to-end manner. This thesis finally concludes with a discussion on the future direction for this research and its potential impact in the domain of Music Information Retrieval.
ContributorsPapreja, Piyush (Author) / Panchanathan, Sethuraman (Thesis advisor) / Demakethepalli Venkateswara, Hemanth Kumar (Committee member) / Amor, Heni Ben (Committee member) / Arizona State University (Publisher)
Created2019
166172-Thumbnail Image.png
Description

Bleeding control education has taken a much more prominent focus in saving lives over the past decade. While many non-medically trained civilians are receiving Stop the Bleed training, throughout their time as students, baccalaureate nursing students prominently struggle in pre-hospital emergencies. Not only would the implementation of Stop the Bleed

Bleeding control education has taken a much more prominent focus in saving lives over the past decade. While many non-medically trained civilians are receiving Stop the Bleed training, throughout their time as students, baccalaureate nursing students prominently struggle in pre-hospital emergencies. Not only would the implementation of Stop the Bleed education into baccalaureate nursing improve client outcomes, it can further spread and share the message of bleeding control, as well as enhance the student experience.

ContributorsMcDonald, Matthew (Author) / Hagler, Debra (Thesis director) / May, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Edson College of Nursing and Health Innovation (Contributor)
Created2022-05