Matching Items (3)
Filtering by

Clear all filters

157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
155771-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction sector (by count), the planning of these projects varies greatly, and that a consistent definition of “small infrastructure project” did not exist. This dissertation summarizes the motivations and efforts of Construction Industry Institute (CII) Research Team 314a to develop a non-proprietary front end planning tool specifically for small infrastructure projects, namely the Project Definition Rating Index (PDRI) for Small Infrastructure Projects. The author was a member of CII Research Team 314a, who was tasked with developing the tool in September 2015. The author, together with the research team, scrutinized and adapted an existing infrastructure-focused FEP tool, the PDRI for Infrastructure Projects, and other resources to develop a set of 40 specific elements relevant to the planning of small infrastructure projects. The author along with the research team supported the facilitation of seven separate industry workshops where 71 industry professionals evaluated the element descriptions and provided element prioritization data that was statistically analyzed and used to develop a corresponding weighted score sheet. The tool was tested on 76 completed and in-progress projects, the analysis of which showed that small infrastructure projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also conducted qualitative and quantitative similarities and differences between PDRI – Infrastructure and PDRI – Small Infrastructure Projects in support of improved planning efforts for both types of projects. Finally, the author piloted a case study that introduced the PDRI into an introductory construction management course to enhance students’ learning experience.
ContributorsElZomor, Mohamed A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2017
153880-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the industrial construction sector, the planning of these project varies greatly, and that a consistent definition of “small industrial project” did not exist. This dissertation summarizes the motivations and efforts to develop a non-proprietary front end planning tool specifically for small industrial projects, namely the Project Definition Rating Index (PDRI) for Small Industrial Projects. The author was a member of Construction Industry Institute (CII) Research Team 314, who was tasked with developing the tool in May of 2013. The author, together with the research team, reviewed, scrutinized and adapted an existing industrial-focused FEP tool, the PDRI for Industrial Projects, and other resources to develop a set of 41 specific elements relevant to the planning of small industrial projects. The author supported the facilitation of five separate industry workshops where 65 industry professionals evaluated the element descriptions, and provided element prioritization data that was statistically analyzed and used to develop a weighted score sheet that corresponds to the element descriptions. The tool was tested on 54 completed and in-progress projects, the author’s analysis of which showed that small industrial projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects overwhelmingly agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also developed an index-based selection guide to aid PDRI users in choosing the appropriate tool for use on an industrial project based on distinguishing project size with indicators of project complexity. The final results of the author’s research provide several contributions to the front end planning, small projects, and project complexity bodies of knowledge.
ContributorsCollins, Wesley A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2015